Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
1.
Adv Healthc Mater ; : e2402718, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358952

RESUMEN

Parkinson's disease (PD) pathology speculates that neuromelanin (NM) and iron ions play a significant role in physiological and pathological conditions of PD. Because the difficult accessibility of NM has limited targeted research, synthetic melanin-like nanoparticles have been used to instead. In this report, the eumelanin and pheomelanin-like polydopamine (PDA) nanoparticles are prepared that can be used to simulate natural NM with or without chelating iron ion and studied the redox effects in vitro and in vivo on neuronal cells and PD. The synthetic pheomelanin-like PDA nanoparticles have much stronger redox activity than eumelanin-like PDA nanoparticles without or with iron ion. They can protect neurons by scavenging reactive oxygen species (ROS), while cause neuronal cell death and PD due to excessive binding of iron ions. This work provides new evidence for the relationship among two structural components of NM and iron in PD as well as displays the different effects on the roles of eumelanin and pheomelanin in redox activity under physiological or pathological conditions, which provide a new effective choice for cellular and animal models of PD and offer theoretical guidance for targeted treatment and mechanism research on PD.

2.
Front Oncol ; 14: 1438722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224810

RESUMEN

Objective: To determine the function of miR-125a-5p in laryngeal squamous cell carcinoma (LSCC), its correlation with radiation sensitivity, and the underlying regulatory mechanism. Materials and methods: We conducted the analysis on the correlation between miR-125a-5p and head and neck squamous cell carcinoma (HNSCC) using data obtained from The Cancer Genome Atlas (TCGA). The putative gene targeted by miR-125a-5p has been identified as HK2, while the expression levels of miR-125a-5p and HK2 were measured in laryngeal cancer tissues and cells using RT-PCR. MiR-125a-5p and HK2 were introduced into the lentiviral vector and the vector was used to transfect AMC-HN-8 cells. The roles of miR-125a-5p and HK2 in LSCC and on radiosensitivity were determined by evaluating cell growth, examining colony formation, analyzing flow cytometry, and utilizing the single hit multi-target model. Western blotting was used to measure H2AX and rH2AX levels in the DNA damage response (DDR) pathway. The validation of the interaction between miR-125a-5p and HK2 was conducted through the dual-luciferase assay. To further confirm the association between miR-125a-5p and HK2, as well as its influence on radiosensitivity, rescue experiments were performed. Results: The expression of miR-125a-5p is downregulated in LSCC, while upregulating its expression could suppress cell growth, induce apoptosis, and enhance radiosensitivity. Additionally, HK2 exhibited high expression in LSCC and the biological function was opposite to miR-125a-5p. Western blotting analysis revealed that miR-125a-5p increased rH2AX levels and decreased H2AX levels, conversely, HK2 had the opposite effect on miR-125a-5p. These findings suggested that HK2 may serve as the target gene of miR-125a-5p. The double luciferase assay confirmed the binding of HK2 to miR-125a-5p, and rescue trials confirmed the role of miR-125a-5p in regulating the effects and radiation sensitivity of LSCC by targeting HK2 via the DDR pathway. Conclusion: By targeting HK2 and impacting the DDR pathway, miR-125a-5p has been found to inhibit cellular proliferation, enhance apoptosis, and heighten radiosensitivity in LSCC.

3.
World Allergy Organ J ; 17(10): 100970, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39308790

RESUMEN

Background: Allergic rhinitis (AR) is an allergic reaction dominated by the Th2 immune response in the nasal mucosa. The bacterial infection process affects the balance between Th1 and Th2 immune responses, and the level of exposure to environmental flora is closely related to the development of AR. Hydrogen (H2) is a medical molecule with anti-inflammatory and antioxidant properties. This study aimed to explore the possible mechanism of action of H2 on AR through its ability to regulate the balance of nasal flora. Methods: Serum eosinophil count (EOS), immunoglobulin E (IgE) concentration, visual analog scale (VAS), total nasal symptom score (TNSS), and rhinoconjunctivitis quality of life questionnaire (RQLQ) were observed before and after hydrogen inhalation in AR patients. Skin prick test (SPT) was used to determine allergen sensitisation. Community composition and relative abundance of nasal flora were examined before and after hydrogen inhalation and in normal subjects using 16S rRNA gene sequencing. Results: There were no adverse reactions during and after hydrogen inhalation in AR patients, with a favorable safety profile and significant improvements in VAS, TNSS, EOS, and IgE (P < 0.05). Cavity flora 16S rRNA gene sequencing showed higher abundance of Ruminococcus and Erysipelotrichaceae flora in the nasal cavity of AR patients than in normal subjects, and their abundance could be down-regulated after H2 inhalation. H2 significantly increased the abundance of Blautia_faecis and negatively correlated with VAS, TNSS, EOS, and IgE. Conclusions: H2 may improve symptoms in AR patients by modulating the distribution of nasal flora. Trials with larger sample sizes are required to further test this hypothesis. Trial registration: This trial was registered in the China Clinical Trial Registry (Registration No. ChiCTR2200062253).

4.
Syst Biol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283716

RESUMEN

Despite significant advances in phylogenetics over the past decades, the deep relationships within Bivalvia (phylum Mollusca) remain inconclusive. Previous efforts based on morphology or several genes have failed to resolve many key nodes in the phylogeny of Bivalvia. Advances have been made recently using transcriptome data, but the phylogenetic relationships within Bivalvia historically lacked consensus, especially within Pteriomorphia and Imparidentia. Here, we inferred the relationships of key lineages within Bivalvia using matrices generated from specifically designed ultraconserved elements (UCEs) with 16 available genomic resources and 85 newly sequenced specimens from 55 families. Our new probes (Bivalve UCE 2k v.1) for target sequencing captured an average of 849 UCEs with 1085-bp in mean length from in vitro experiments. Our results introduced novel schemes from six major clades (Protobranchina, Pteriomorphia, Palaeoheterodonta, Archiheterodonta, Anomalodesmata and Imparidentia), though some inner nodes were poorly resolved, such as paraphyletic Heterodonta in some topologies potentially due to insufficient taxon sampling. The resolution increased when analyzing specific matrices for Pteriomorphia and Imparidentia. We recovered three Pteriomorphia topologies different from previously published trees, with the strongest support for ((Ostreida + (Arcida + Mytilida)) + (Pectinida + (Limida + Pectinida))). Limida were nested within Pectinida, warranting further studies. For Imparidentia, our results strongly supported the new hypothesis of (Galeommatida + (Adapedonta + Cardiida)), while the possible non-monophyly of Lucinida was inferred but poorly supported. Overall, our results provide important insights into the phylogeny of Bivalvia and show that target enrichment sequencing of UCEs can be broadly applied to study both deep and shallow phylogenetic relationships.

5.
Int J Food Microbiol ; 426: 110919, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39321599

RESUMEN

Radio frequency (RF) heating has been utilized to investigate sterilization techniques, but the mechanism of sterilization via RF heating, particularly on Bacillus cereus (B. cereus), has not been thoroughly examined. In this paper, sterilization processes and potential bactericidal mechanisms of B. cereus using RF were investigated. The best heating and sterilization efficiency was achieved at (Electrode gap 130 mm, conductivity of bacterial suspension 0.1 S/m, volume of bacterial suspension 40 mL). Heating a suspension of B. cereus to 90 °C in 80 s using RF reduced the number of viable bacteria by 4.87 logarithms. At the cellular level, there was a significant leakage of nucleic acids and proteins from the bacterial cells. Additionally, the integrity of the cell membrane was severely damaged, with a decrease in ATP concentration of 2.08 mM, Na, K-ATPase activity to 10.7 (U/109 cells), and Ca, Mg-ATPase activity to 11.6 (U/109 cells). At the molecular level, transcriptomics analysis showed that RF heating of B. cereus to 65 °C produced 650 more differentially expressed genes (DEGs) compared with RF heating to 45 °C. The GO annotation analysis indicated that the majority of differentially expressed genes (DEGs) were predominantly associated with cellular components. KEGG metabolic analysis showed enrichment in microbial metabolism in diverse environments, etc. This study investigated the potential bactericidal mechanism of B. cereus using RF, and provided some theoretical basis for the research of the sterilization of B. cereus.

6.
Sci Total Environ ; 954: 176203, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270867

RESUMEN

Metabolic syndrome (MetS) is a significant public health problem and presents an escalating clinical challenge globally. To combat this problem effectively, urgent measures including identify some modifiable environmental factors are necessary. Outdoor artificial light at night (LAN) exposure garnered much attention due to its impact on circadian rhythms and metabolic process. However, epidemiological evidence on the association between outdoor LAN exposure and MetS remains limited. To determine the relationship between outdoor LAN exposure and MetS, 15,477 adults participated the 33 Communities Chinese Health Study (33CCHS) in 2009 were evaluated. Annual levels of outdoor LAN exposure at participants' residential addresses were assessed using satellite data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Generalized linear mixed effect models were utilized to assess the association of LAN exposure with MetS and its components, including elevated waist circumference (WC), triglycerides (TG), blood pressure (BP), fasting blood glucose (FBG), and reduced high-density lipoprotein cholesterol (HDL-C). Effect modification by various social demographic and behavior factors was also examined. Overall, 4701 (30.37 %) participants were defined as MetS. The LAN exposure ranged from 6.03 to 175.00 nW/cm2/sr. The adjusted odds ratio (OR) of MetS each quartile increment of LAN exposure were 1.43 (95 % CI: 1.21-1.69), 1.44 (95 % CI: 1.19-1.74) and 1.52 (95 % CI: 1.11-2.08), respectively from Q2-Q4. Similar adverse associations were also found for the components of MetS, especially for elevated BP, TG and FBG. Interaction analyses indicated that the above associations were stronger in participants without habitual exercise compared with those with habitual exercise (e.g. OR were 1.52 [95 % CI: 1.28-1.82] vs. 1.27 [95 % CI, 1.04-1.55], P-interaction = 0.042 for MetS). These findings suggest that long-term exposure to LAN can have a significant deleterious effect on MetS, potentially making LAN an important modifiable environmental factor to target in future preventive strategies.

7.
Adv Mater ; 36(40): e2404534, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39183503

RESUMEN

Large skin wounds, with extensive surface area and deep vertical full-thickness involvement, can pose significant challenges in clinical settings. Traditional routes for repairing skin wounds encompass three hallmarks: 1) scab formation for hemostasis; 2) proliferation and migration of epidermal cells for wound closure; 3) proliferation, migration, and functionalization of fibroblasts and endothelial cells for dermal remodeling. However, this route face remarkable challenges to healing large wounds, usually leading to disordered structures and loss of functions in the regenerated skin, due to limited control on the transition among the three stages. In this work, an implantable bioelectronics is developed that enables the synchronization of the three stages, offering accelerated and high-quality healing of large skin wounds. The system efficiently electro-transfect local cells near the wounds, forcing cellular proliferation, while providing a 3D porous environments for synchronized migration of epidermal and dermal cells. In vivo experiments demonstrated that the system achieved synchronous progression of multiple layers within the wounds, leading to the reconstruction of a complete skin structure similar to healthy skin, which presents a new avenue for the clinical translation of large wound healing.


Asunto(s)
Andamios del Tejido , Cicatrización de Heridas , Animales , Andamios del Tejido/química , Ratones , Transfección/métodos , Piel/metabolismo , Proliferación Celular , Humanos , Movimiento Celular , Fibroblastos/citología , Fibroblastos/metabolismo
8.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126105

RESUMEN

The senescence of bone marrow mesenchymal stromal cells (MSCs) leads to the impairment of stemness and osteogenic differentiation capacity. In a previous study, we screened out stearoyl-CoA desaturase 2 (SCD2), the most evidently changed differential gene in lipid metabolism, using combined transcriptomic and metabolomic analyses, and verified that SCD2 could mitigate MSC senescence. However, the underlying molecular mechanism by which the rate-limiting enzyme of lipogenesis SCD2 manipulates MSC senescence has not been completely understood. In this study, we demonstrate that SCD2 over-expression alleviates MSC replicative senescence and ameliorates their osteogenic differentiation through the regulation of lipogenesis. Furthermore, SCD2 expression is reduced, whereas miR-200c-3p expression is elevated in replicative senescent MSCs. SCD2 is the direct target gene of miR-200c-3p, which can bind to the 3'-UTR of SCD2. MiR-200c-3p replenishment in young MSCs is able to diminish SCD2 expression levels due to epigenetic modulation. In addition, SCD2-rescued MSC senescence and enhanced osteogenic differentiation can be attenuated by miR-200c-3p repletion via suppressing lipogenesis. Taken together, we reveal the potential mechanism of SCD2 influencing MSC senescence from the perspective of lipid metabolism and epigenetics, which provides both an experimental basis for elucidating the mechanism of stem cell senescence and a novel target for delaying stem cell senescence.


Asunto(s)
Senescencia Celular , Lipogénesis , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Estearoil-CoA Desaturasa , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Lipogénesis/genética , Senescencia Celular/genética , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Osteogénesis/genética , Diferenciación Celular/genética , Regulación de la Expresión Génica , Células Cultivadas , Epigénesis Genética
9.
Diagn Pathol ; 19(1): 109, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138533

RESUMEN

BACKGROUND: Clear cell odontogenic carcinoma (CCOC) is an odontogenic carcinoma characterized by sheets and islands of vacuolated and clear cells. The diagnosis of atypical CCOC can pose a challenge when tumor cells deviate from their characteristic clear morphology, even with the aid of genetic profiling for CCOC identification. CASE PRESENTATION: In this manuscript, we detailed the inaugural instance of a recurrently recurring clear cell odontogenic carcinoma (CCOC) with pronounced squamous differentiation in a 64-year-old male. The primary tumor in this individual initially displayed a biphasic clear cell phenotype. However, subsequent to the third recurrence, the clear tumor cells were entirely supplanted by epidermoid cells characterized by eosinophilic cytoplasm, vesicular chromatin, and prominent nucleoli. Notable aggressive attributes such as necrosis, conspicuous cytological malignancy, perineural dissemination, and vascular invasion were noted. Additionally, the tumor progressed to manifest lung metastases. The tumor cells exhibited positive immunoreactivity for AE1/AE3, KRT19, Pan-CK, EMA, P40, P63, CK34ßE12, and P53, while they tested negative for CK35ßH11, KRT7, S-100, and neuroendocrine markers. The Ki-67 proliferation index was calculated at an average of 15%. Furthermore, FISH analysis unveiled the presence of the EWSR1::ATF1 gene fusion. CONCLUSIONS: This case illustrated a rare and aggressive case of CCOC characterized by significant squamous differentiation upon recurrence of the tumor.


Asunto(s)
Biomarcadores de Tumor , Tumores Odontogénicos , Humanos , Masculino , Persona de Mediana Edad , Tumores Odontogénicos/patología , Tumores Odontogénicos/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/genética , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/patología , Proteínas de Fusión Oncogénica/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Inmunohistoquímica
10.
Cell Death Discov ; 10(1): 365, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143074

RESUMEN

Colon cancer is a prevalent malignancy, while recent studies revealed the dys-regulation of Hippo signaling as the important driver for colon cancer progression. Several studies have indicated that post-translational modifications on YAP play crucial roles in both Hippo signaling activity and cancer progression. This raises a puzzling question about why YAP/TAZ, an auto-inhibitory pathway, is frequently over-activated in colon cancer, despite the suppressive cascade of Hippo signaling remaining operational. The protein stability of YAP is subject to a tiny balance between ubiquitination and deubiquitination processes. Through correlation analysis of DUBs (deubiquitinases) expression and Hippo target gene signature in colon cancer samples, we found JOSD1 as a critical deubiquitinase for Hippo signaling and colon cancer progression. JOSD1 could facilitate colon cancer progression and in colon cancer, inhibition of JOSD1 via shRNA has been demonstrated to impede tumorigenesis. Furthermore, molecular mechanism studies have elucidated that JOSD1 enhances the formation of the Hippo/YAP transcriptome by impeding K48-linked polyubiquitination on YAP. ChIP assays have shown that YAP binds to JOSD1's promoter region, promoting its gene transcription. These results suggest that JOSD1 is involved in both activating and being targeted by the Hippo signaling pathway in colon cancer. Consequently, a positive regulatory loop between JOSD1 and Hippo signaling has been identified, underscoring their interdependence during colon cancer progression. Thus, targeting JOSD1 may represent a promising therapeutic approach for managing colon cancer.

11.
Reprod Biol Endocrinol ; 22(1): 103, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143547

RESUMEN

DNA damage is a key factor affecting gametogenesis and embryo development. The integrity and stability of DNA are fundamental to a woman's successful conception, embryonic development, pregnancy and the production of healthy offspring. Aging, reactive oxygen species, radiation therapy, and chemotherapy often induce oocyte DNA damage, diminished ovarian reserve, and infertility in women. With the increase of infertility population, there is an increasing need to study the relationship between infertility related diseases and DNA damage and repair. Researchers have tried various methods to reduce DNA damage in oocytes and enhance their DNA repair capabilities in an attempt to protect oocytes. In this review, we summarize recent advances in the DNA damage response mechanisms in infertility diseases such as PCOS, endometriosis, diminished ovarian reserve and hydrosalpinx, which has important implications for fertility preservation.


Asunto(s)
Daño del ADN , Reparación del ADN , Infertilidad Femenina , Femenino , Humanos , Infertilidad Femenina/genética , Infertilidad Femenina/terapia , Oocitos , Síndrome del Ovario Poliquístico/genética , Endometriosis/genética , Reserva Ovárica/fisiología , Preservación de la Fertilidad/métodos
12.
Mol Ecol ; : e17504, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166453

RESUMEN

The Venus flytrap sea anemone Actinoscyphia liui inhabits the nutrient-limited deep ocean in the tropical western Pacific. Compared with most other sea anemones, it has undergone a distinct modification of body shape similar to that of the botanic flytrap. However, the molecular mechanism by which such a peculiar sea anemone adapts to a deep-sea oligotrophic environment is unknown. Here, we report the chromosomal-level genome of A. liui constructed from PacBio and Hi-C data. The assembled genome is 522 Mb in size and exhibits a continuous scaffold N50 of 58.4 Mb. Different from most other sea anemones, which typically possess 14-18 chromosomes per haplotype, A. liui has only 11. The reduced number of chromosomes is associated with chromosome fusion, which likely represents an adaptive strategy to economize energy in oligotrophic deep-sea environments. Comparative analysis with other deep-sea sea anemones revealed adaptive evolution in genes related to cellular autophagy (TMBIM6, SESN1, SCOCB and RPTOR) and mitochondrial energy metabolism (MDH1B and KAD2), which may aid in A. liui coping with severe food scarcity. Meanwhile, the genome has undergone at least two rounds of expansion in gene families associated with fast synaptic transmission, facilitating rapid responses to water currents and prey. Positive selection was detected on putative phosphorylation sites of muscle contraction-related proteins, possibly further improving feeding efficiency. Overall, the present study provides insights into the molecular adaptation to deep-sea oligotrophic environments and sheds light upon potential effects of a novel morphology on the evolution of Cnidaria.

13.
Front Cardiovasc Med ; 11: 1414089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185136

RESUMEN

Purpose: To explore molecular mechanisms affecting nutritional risk and neurodevelopment in children with congenital heart disease (CHD) by combining transcriptome and metabolome analysis. Methods: A total of 26 blood and serum samples from 3 groups of children with CHD low nutritional risk combined with normal neurodevelopment (group A), low nutritional risk combined with neurodevelopmental disorders (group B) and high nutritional risk combined with normal neurodevelopment (group C) were analyzed by transcriptome and metabolomics to search for differentially expressed genes (DEGs) and metabolites (DEMs). Functional analysis was conducted for DEGs and DEMs. Further, the joint pathway analysis and correlation analysis of DEGs and DEMs were performed. Results: A total of 362 and 1,351 DEGs were detected in group B and C compared to A, respectively. A total of 6 and 7 DEMs were detected in group B and C compared to A in positive mode, respectively. There were 39 and 31 DEMs in group B and C compared to A in negative mode. Transcriptomic analysis indicated that neurodevelopment may be regulated by some genes such as NSUN7, SLC6A8, CXCL1 and LCN8, nutritional risk may be regulated by SLC1A3 and LCN8. Metabolome analysis and joint pathway analysis showed that tryptophan metabolism, linoleic and metabolism and glycerophospholipid metabolism may be related to neurodevelopment, and glycerophospholipid metabolism pathway may be related to nutritional risk. Conclusion: By integrating transcriptome and metabolome analyses, this study revealed key genes and metabolites associated with nutritional risk and neurodevelopment in children with CHD, as well as significantly altered pathways. It has important clinical translational significance.

14.
Front Biosci (Landmark Ed) ; 29(8): 290, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39206896

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC). TNBC has a poor prognosis due to high intratumoral heterogeneity and metastasis, pointing to the need to explore distinct molecular subtypes and gene regulatory networks. METHODS: The scRNA-seq data of five primary BC samples were downloaded from the Gene Expression Omnibus (GEO) database. Clustering was performed based on filtered and normalized data using the Seurat R package to identify marker genes, which were subsequently annotated to each subset using the CellMarker database. AUCell R package was applied to calculate the hallmark score for each epithelial cell. Marker genes of each subset were screened with FindAllMarkers and their biological functions were analyzed using the Database for Annotation Visualization and Integrated Discovery (DAVID) database. Next, cell-cell communication was performed with the CellChat R package. To identify the key regulatory genes, single-cell regulatory network inference and clustering (SCENIC) analysis was conducted. Finally, the expression and potential biological functions of the key regulatory factors were verified through cellular experiments. RESULTS: A total of 29,101 cells were classified into nine cell subsets, namely, Fibroblasts, Fibroepithelial cells, Epithelial cells 1, Epithelial cells 2, Epithelial cells 3, Endothelial cells, T cells, Plasma B cells and Macrophages. Particularly, the epithelial cells had a higher proportion and higher transforming growth factor-ß (TGF-ß) activity in the TNBC pathotype as compared to the non-TNBC pathotype. Furthermore, four epithelial cell subsets (marked as Stearoyl-CoA Desaturase (SCD1), marker of proliferation Ki67 (MKI67), Annexin A3 (ANXA3) and aquaporin 5 (AQP5)) were identified as having the greatest impact on the TNBC pathotype. Cell-cell interaction analysis revealed that ANXA3-epithelial cell subset suppressed the T cell function through different mechanisms. C-fos gene (FOS) and X-box binding protein 1 (XBP1) were considered critical regulons involved in TNBC progression. Notably, cellular experiments demonstrated that silencing XBP1 and overexpressing FOS inhibited cancer cell invasion. CONCLUSION: The four epithelial cell subsets and two critical regulons identified based on the scRNA-seq data could help explore the underlying intratumoral heterogeneity molecular mechanism and develop effective therapies for TNBC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Análisis de la Célula Individual , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Análisis de la Célula Individual/métodos , Femenino , Análisis de Secuencia de ARN/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Comunicación Celular/genética , Heterogeneidad Genética , Perfilación de la Expresión Génica/métodos
15.
Animals (Basel) ; 14(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39199852

RESUMEN

Marine mollusks, including oysters, are highly tolerant to high levels of cadmium (Cd), but the molecular mechanisms underlying their molecular response to acute Cd exposure remain unclear. In this study, the Pacific oyster Crassostrea gigas was used as a biological model, exposed to acute Cd stress for 96 h. Transcriptomic analyses of their gills were performed, and metabolomic analyses further validated these results. In our study, a total of 111 differentially expressed metabolites (DEMs) and 2108 differentially expressed genes (DEGs) were identified under acute Cd exposure. Further analyses revealed alterations in key genes and metabolic pathways associated with heavy metal stress response. Cd exposure triggered physiological and metabolic responses in oysters, including enhanced oxidative stress and disturbances in energy metabolism, and these changes revealed the biological response of oysters to acute Cd stress. Moreover, oysters could effectively enhance the tolerance and detoxification ability to acute Cd exposure through activating ABC transporters, enhancing glutathione metabolism and sulfur relay system in gill cells, and regulating energy metabolism. This study reveals the molecular mechanism of acute Cd stress in oysters and explores the molecular mechanism of high tolerance to Cd in oysters by using combined metabolomics and transcriptome analysis.

16.
Sci Adv ; 10(31): eadn8750, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39083598

RESUMEN

Sickle cell disease is a growing health burden afflicting millions around the world. Clinical observation and laboratory studies have shown that the severity of sickle cell disease is ameliorated in individuals who have elevated levels of fetal hemoglobin. Additional pharmacologic agents to induce sufficient fetal hemoglobin to diminish clinical severity is an unmet medical need. We recently found that up-regulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) can induce fetal hemoglobin synthesis in human primary erythroblasts. Here, we report that a small molecule, SR-18292, increases PGC-1α leading to enhanced fetal hemoglobin expression in human erythroid cells, ß-globin yeast artificial chromosome mice, and sickle cell disease mice. In SR-18292-treated sickle mice, sickled red blood cells are significantly reduced, and disease complications are alleviated. SR-18292, or agents in its class, could be a promising additional therapeutic for sickle cell disease.


Asunto(s)
Anemia de Células Falciformes , Antidrepanocíticos , Hemoglobina Fetal , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/patología , Hemoglobina Fetal/metabolismo , Hemoglobina Fetal/genética , Animales , Humanos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones , Antidrepanocíticos/farmacología , Antidrepanocíticos/uso terapéutico , Modelos Animales de Enfermedad , Globinas beta/genética , Globinas beta/metabolismo
17.
Angew Chem Int Ed Engl ; : e202409746, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073275

RESUMEN

Non-natural building blocks (BBs) present a vast reservoir of chemical diversity for molecular recognition and drug discovery. However, leveraging evolutionary principles to efficiently generate bioactive molecules with a larger number of diverse BBs poses challenges within current laboratory evolution systems. Here, we introduce programmable chemical evolution (PCEvo) by integrating chemoinformatic classification and high-throughput array synthesis/screening. PCEvo initiates evolution by constructing a diversely combinatorial library to create ancestral molecules, streamlines the molecular evolution process and identifies high-affinity binders within 2-4 cycles. By employing PCEvo with 108 BBs and exploring >10^17 chemical space, we identify bicyclic peptidomimetic binders against targets SAR-CoV-2 RBD and Claudin18.2, achieving nanomolar affinity. Remarkably, Claudin18.2 binders selectively stain gastric adenocarcinoma cell lines and patient samples. PCEvo achieves expedited evolution in a few rounds, marking a significant advance in utilizing non-natural building blocks for rapid chemical evolution applicable to targets with or without prior structural information and ligand preference.

18.
Sci Signal ; 17(843): eadk0231, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954637

RESUMEN

The Hippo pathway is generally understood to inhibit tumor growth by phosphorylating the transcriptional cofactor YAP to sequester it to the cytoplasm and reduce the formation of YAP-TEAD transcriptional complexes. Aberrant activation of YAP occurs in various cancers. However, we found a tumor-suppressive function of YAP in clear cell renal cell carcinoma (ccRCC). Using cell cultures, xenografts, and patient-derived explant models, we found that the inhibition of upstream Hippo-pathway kinases MST1 and MST2 or expression of a constitutively active YAP mutant impeded ccRCC proliferation and decreased gene expression mediated by the transcription factor NF-κB. Mechanistically, the NF-κB subunit p65 bound to the transcriptional cofactor TEAD to facilitate NF-κB-target gene expression that promoted cell proliferation. However, by competing for TEAD, YAP disrupted its interaction with NF-κB and prompted the dissociation of p65 from target gene promoters, thereby inhibiting NF-κB transcriptional programs. This cross-talk between the Hippo and NF-κB pathways in ccRCC suggests that targeting the Hippo-YAP axis in an atypical manner-that is, by activating YAP-may be a strategy for slowing tumor growth in patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma de Células Renales , Proliferación Celular , Neoplasias Renales , Proteínas Serina-Treonina Quinasas , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Transducción de Señal , Factores de Transcripción de Dominio TEA/metabolismo , FN-kappa B/metabolismo , FN-kappa B/genética , Ratones Desnudos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Serina-Treonina Quinasa 3
19.
Front Microbiol ; 15: 1381457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050630

RESUMEN

Introduction: This study characterized Vibrio alginolyticus isolated from seafood and freshwater products in China (2020). Methods and Results: In total, 122 (95.31%) V. alginolyticus isolates were resistant to at least 1 antibiotic category, and 2 (1.56%) isolates were resistant to at least 3 antibiotic categories and belong to multi-drug resistance (MDR) isolates. A high prevalence rate was observed to be blaCARB (98.04%) encoding beta-lactam resistance, followed by tet (97.06%) encoding tetracycline resistance and fos (4.90%) encoding resistance to fosfomycin. Among the 57 V. alginolyticus isolates, the commonest virulence genes were type III secretion system translocated gene vopD, vopB, and vcrH (54.4%, 31/57), type III secretion system regulated gene tyeA (54.39%), followed by vscI and vscF (50.88%) encoded type III secretion system inner rod protein and needle protein, respectively. Multilocus sequence typing (MLST) showed considerable genetic diversity, with 34 distinct sequence types (STs) identified among 55 isolates. ST421 (n = 5), ST166 (n = 4), ST523 (n = 3), ST516 (n = 3), and ST507 (n = 3) were dominant STs among 55 V. alginolyticus isolates. Discussion: These findings highlight the widespread occurrence of V. alginolyticus in both freshwater and seafood products, underscoring the critical need for vigilant monitoring of these bacteria. Such measures are essential for ensuring effective food safety management and safeguarding public health.

20.
Cancer Med ; 13(13): e7453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38986683

RESUMEN

OBJECTIVE: The purpose of the study is to construct meaningful nomogram models according to the independent prognostic factor for metastatic pancreatic cancer receiving chemotherapy. METHODS: This study is retrospective and consecutively included 143 patients from January 2013 to June 2021. The receiver operating characteristic (ROC) curve with the area under the curve (AUC) is utilized to determine the optimal cut-off value. The Kaplan-Meier survival analysis, univariate and multivariable Cox regression analysis are exploited to identify the correlation of inflammatory biomarkers and clinicopathological features with survival. R software are run to construct nomograms based on independent risk factors to visualize survival. Nomogram model is examined using calibration curve and decision curve analysis (DCA). RESULTS: The best cut-off values of 966.71, 0.257, and 2.54 for the systemic immunological inflammation index (SII), monocyte-to-lymphocyte ratio (MLR), and neutrophil-to-lymphocyte ratio (NLR) were obtained by ROC analysis. Cox proportional-hazards model revealed that baseline SII, history of drinking and metastasis sites were independent prognostic indices for survival. We established prognostic nomograms for primary endpoints of this study. The nomograms' predictive potential and clinical efficacy have been evaluated by calibration curves and DCA. CONCLUSION: We constructed nomograms based on independent prognostic factors, these models have promising applications in clinical practice to assist clinicians in personalizing the management of patients.


Asunto(s)
Inflamación , Nomogramas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/inmunología , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Inflamación/inmunología , Anciano , Pronóstico , Neutrófilos/inmunología , Curva ROC , Estimación de Kaplan-Meier , Linfocitos/inmunología , Monocitos/inmunología , Metástasis de la Neoplasia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Modelos de Riesgos Proporcionales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...