Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38921920

RESUMEN

In the field of perovskite optoelectronics, developing hole-transporting materials (HTMs) on the spiro[fluorene-9,9'-xanthene] (SFX) platform is one of the current research focuses. The SFX inherits the merits of spirobifluorene in terms of the configuration and property, but it is more easily derivatized and regulated by virtue of its binary structure. In this work, we design and synthesize four isomeric SFX-based HTMs, namely m-SFX-mF, p-SFX-mF, m-SFX-oF, and p-SFX-oF, through varying the positions of fluorination on the peripheral aniline units and their substitutions on the SFX core, and the optoelectronic performance of the resulting HTMs is evaluated in both perovskite solar cells (PSCs) and light-emitting diodes (PeLEDs) by the vacuum thermal evaporating hole-transporting layers (HTLs). The HTM p-SFX-oF exhibits an improved power conversion efficiency of 15.21% in an inverted PSC using CH3NH3PbI3 as an absorber, benefiting from the deep HOMO level and good HTL/perovskite interface contact. Meanwhile, the HTM m-SFX-mF provides a maximum external quantum efficiency of 3.15% in CsPb(Br/Cl)3-based PeLEDs, which is attributed to its perched HOMO level and shrunken band-gap for facilitating charge carrier injection and then exciton combination. Through elucidating the synergistic position effect of fluorination on aniline units and their substitutions on the SFX core, this work lays the foundation for developing low-cost and efficient HTMs in the future.

2.
Food Chem ; 445: 138747, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387317

RESUMEN

A new 3D metal-organic framework {[Cd16(tr2btd)10(dcdps)16(H2O)3(EtOH)]∙15DMF}n (MOF 1, tr2btd = 4,7-di(1,2,4-triazol-1-yl)benzo-2,1,3-thiadiazole, H2dcdps = 4,4'-sulfonyldibenzoic acid) was obtained and its luminescent properties were studied. MOF 1 exhibited bright blue-green luminescence with a high quantum yield of 74 % and luminescence quenching response to a toxic natural polyphenol gossypol and luminescence enhancement response to some trivalent metal cations (Fe3+, Cr3+, Al3+ and Ga3+). The limit of gossypol detection was 0.20 µM and the determination was not interfered by the components of the cottonseed oil. The limit of detection of gallium(III) was 1.1 µM. It was demonstrated that MOF 1 may be used for distinguishing between the genuine sunflower oil and oil adulterated by crude cottonseed oil through qualitative luminescent and quantitative visual gossypol determination.


Asunto(s)
Galio , Gosipol , Estructuras Metalorgánicas , Petróleo , Aceite de Semillas de Algodón , Luminiscencia , Culinaria
3.
RSC Adv ; 14(9): 6205-6215, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38375002

RESUMEN

Employing semiconductor photocatalysts featuring a hollow multi-shelled (HoMs) structure to establish a heterojunction is an effective approach to addressing the issues of low light energy utilization and severe recombination of photogenerated charge carriers. To take advantage of these key factors in semiconductor photocatalysis, here, a dodecahedral HoMs Co3O4/Ag:ZnIn2S4 photocatalyst (denoted as Co3O4/AZIS) was firstly synthesized by coupling Ag+-doped ZnIn2S4 (AZIS) nanosheets with dodecahedral HoMs Co3O4. The unique HoMs structure of the photocatalyst can not only effectively promote the separation and transfer of photo-induced charge, but also improve the utilization rate of visible light, exposing rich active sites for the photocatalytic redox reaction. The photocatalytic experiment results showed that the Co3O4/90.0 wt% AZIS photocatalyst has a high hydrogen (H2) production rate (695.0 µmol h-1 g-1) and high methyl orange (MO) degradation rate (0.4243 min-1). This work provides a feasible strategy for the development of HoMs heterojunction photocatalysts with enhanced H2 production and degradation properties of organic dyes.

4.
Inorg Chem ; 63(6): 2997-3004, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38291727

RESUMEN

The construction of low-cost and highly efficient oxygen evolution electrocatalysts is paramount for clean and sustainable hydrogen energy. In recent years, metal-organic framework (MOF) OER electrocatalysts have attracted tremendous research attention. Herein, we report a simple and facile strategy to construct bimetallic MOFs (named CoMn0.01) for enhancing OER catalytic performance. Significantly, CoMn0.01 exhibited remarkable OER activity (255 mV at 10 mA cm-2) and a low Tafel slope of 66 mV dec-1, superior to those of commercial benchmark electrocatalysts (RuO2, 352 mV, 178 mV dec-1). Besides, the catalyst demonstrated outstanding longevity for 144 h at a current density of 100 mA cm -2. Mn doping can regulate the electronic structure of Co MOFs, which optimizes charge transfer capability and improves conductivity.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123849, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38241931

RESUMEN

The detection of 2,6-pyridinecarboxylic acid (DPA), as a biomarker of Bacillus anthracis, has attracted wide attention. In previous reports of DPA detection, fluorescent probes may not have high specificity. Therefore, the rational design and development of fluorescent sensors with excellent performance is of great significance for the detection of DPA. In this study, two novel lanthanide metal-organic frameworks (Ln-MOFs) were synthesized by hydrothermal method using 3-polyfluorobiphenyl-3 ', 4,5 ' -tricarboxylic acid (H2FPTA) as ligand. Studies have shown that Ln-MOFs can detect DPA in real time, with detection limits of 0.54 µM and 0.67 µM, respectively, and have a high recovery rate (95 % -108 %) in fetal bovine serum. As a self-calibration sensor, other substances in the blood can be clearly distinguished by a two-dimensional fluorescence code diagram. After the Ln-MOFs were spun into nanofiber membranes, they responded quickly to DPA. This increases practicability and provides a promising idea for the development of simple and efficient ratio sensors.


Asunto(s)
Bacillus anthracis , Elementos de la Serie de los Lantanoides , Estructuras Metalorgánicas , Colorantes Fluorescentes , Fluorescencia
6.
ACS Appl Mater Interfaces ; 16(4): 5129-5137, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38227932

RESUMEN

Adenosine triphosphate (ATP) is a small molecule that is released to the urine from bladder urothelial cells and the bladder mucosal band of the human body. In certain cases, ATP can serve as a biomarker in bladder disease. For the practical applicability of luminescent sensors for ATP in urine, it is significant to find a new strategy for making the detection progress simple and available for in-field urine analysis. Here, a novel luminescent lanthanide coordination polymer (Tb-BPA) was designed and synthesized for quick and sensitive detection of ATP through luminescence quenching with a quenching constant of 4.90 × 103 M-1 and a detection limit of 0.55 × 10-6 M. Besides, Tb-BPA has excellent anti-interference ability and can detect ATP in simulated urine with a small relative standard deviation (<4%). Moreover, the luminescent polyacrylonitrile nanofiber films modified by Tb-BPA were prepared by electrospinning and were used for ATP visual detection. Notably, this film is easy to recover and reuse, and maintains good detection performance after at least 7 cycles.


Asunto(s)
Elementos de la Serie de los Lantanoides , Humanos , Adenosina Trifosfato/análisis , Polímeros , Luminiscencia
7.
Langmuir ; 39(49): 17947-17958, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38038632

RESUMEN

Developing a photocatalyst that can effectively utilize the full solar spectrum remains a high-priority objective in the ongoing pursuit of efficient light-to-chemical energy conversion. Herein, the ternary nanocomposite g-C3N4/RGO/W18O49 (CN/RGO/WO) was constructed and characterized by a variety of techniques. Remarkably, under the excitation of photon energies ranging from the ultraviolet (UV) to the near-infrared (NIR) region, the photocatalytic performance of the CN/RGO/WO nanocomposite exhibited a significant enhancement compared with single component g-C3N4 or W18O49 nanosheets for the degradation of methyl orange (MO). The MO photodegradation rate of the optimal CN/1.0 wt% RGO/45.0 wt% WO catalyst reached 0.816 and 0.027 min-1 under UV and visible light excitation, respectively. Even under low-energy NIR light, which is not sufficient to excite g-C3N4, the MO degradation rate can still reach 0.0367 h-1, exhibiting a significant enhancement than pure W18O49. The outstanding MO removal rate and stability were demonstrated by CN/RGO/WO nanocomposites, which arise from the synergistic effect of localized surface plasmon resonance effect induced by W18O49 under vis-NIR excitation and the Z-scheme nanoheterojunction of W18O49 and g-C3N4. In this work, we have exploited the great potential of integrating nonmetallic plasmonic nanomaterials and good conductor RGO to construct high-performance g-C3N4-based full-solar spectral broadband photocatalysts.

8.
Nanomaterials (Basel) ; 13(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37764546

RESUMEN

For developing high-performance organic light-emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) emitters, the diphenyltriazine (TRZ) unit was introduced onto the 2'- and 3'-positions of xanthene moiety of spiro[fluorene-9,9'-xanthene] (SFX) to construct n-type host molecules, namely 2'-TRZSFX and 3'-TRZSFX. The outward extension of the TRZ unit, induced by the meta-linkage, resulted in a higher planarity between the TRZ unit and xanthene moiety in the corresponding 3'-TRZSFX. Additionally, this extension led to a perched T1 level, as well as a lower unoccupied molecular orbital (LUMO) level when compared with 2'-TRZSFX. Meanwhile, the 3'-TRZSFX molecules in the crystalline state presented coherent packing along with the interaction between TRZ units; the similar packing motif was spaced apart from xanthene moieties in the 2'-TRZSFX crystal. These endowed 3'-TRZSFX superior electron transport capacity in single-carrier devices relative to the 2'-TRZSFX-based device. Hence, the 3'-TRZSFX-based TADF-OLED showed remarkable electroluminescent (EL) performance under the operating luminance from turn-on to ca. 1000 cd·m-2 with a maximum external quantum efficiency (EQEmax) of 23.0%, thanks to its matched LUMO level with 4CzIPN emitter and better electron transport capacity. Interestingly, the 2'-TRZSFX-based device, with an EQEmax of 18.8%, possessed relatively low roll-off and higher efficiency when the operating luminance exceeded 1000 cd·m-2, which was attributed to the more balanced carrier transport under high operating voltage. These results were elucidated by the analysis of single-crystal structures and the measurements of single-carrier devices, combined with EL performance. The revealed position effect of the TRZ unit on xanthene moiety provides a more informed strategy to develop SFX-based hosts for highly efficient TADF-OLEDs.

9.
RSC Adv ; 13(22): 15302-15310, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37213336

RESUMEN

The construction of a heterojunction and the introduction of a cocatalyst can both promote the transfer of photogenerated electrons, which are effective strategies to enhance photocatalytic efficiency. In this paper, a ternary RGO/g-C3N4/LaCO3OH composite was synthesized by constructing a g-C3N4/LaCO3OH heterojunction and introducing a non-noble metal cocatalyst RGO through hydrothermal reactions. TEM, XRD, XPS, UV-vis diffuse reflectance spectroscopy, photo-electrochemistry and PL tests were carried out to characterize the structures, morphologies and carrier separation efficiencies of products. Benefiting from the boosted visible light absorption capability, reduced charge transfer resistance and facilitated photogenerated carrier separation, the visible light photocatalytic activity of the ternary RGO/g-C3N4/LaCO3OH composite was effectively improved, resulting in a much increased MO (methyl orange) degradation rate of 0.0326 min-1 compared with LaCO3OH (0.0003 min-1) and g-C3N4 (0.0083 min-1). Moreover, by combining the results of the active species trapping experiment with the bandgap structure of each component, the mechanism of the MO photodegradation process was proposed.

10.
Dalton Trans ; 51(42): 16266-16273, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36218122

RESUMEN

Automobile exhaust gases, plastic pollutants, smoking, and other harmful substances can cause serious harm to human beings and the environment. Styrene, as a common airborne toxin, enters the human body through breathing or the skin and is discharged in the form of phenylglyoxylic acid (PGA). Therefore, specific, sensitive and trace detection of PGA is particularly important. Here, two zinc-based metal-organic frameworks {[Zn2L1(DMF)2H2O](DMF)2H2O}n, {[Zn4(L2)2(DMF)2(H2O)3](DMF)8}n (L1 = 2,5-bis((3-carboxylphenyl)amino)terephthalic acid, L2 = 2,5-bis((4-carboxyphenyl)amino)terephthalic acid) have been reported as 1 and 2, respectively. Both 1 and 2 present 3D structures, which can both be simplified as 4,4,4-c net topology. It is worth mentioning that 2 has two different kinds of Zn SBUs as connecting nodes in the structure. Besides, compared with the other materials for the detection of PGA, 1 and 2 exhibit relatively low detection limits (LODs), both in water and in urine (where the LODs for 1 in water and urine were 0.33 µM and 0.43 µM in the range of 0-0.39 mM, and those for 2 were 0.28 µM and 0.49 µM in the range of 0-0.59 mM, respectively). In addition, the sensors have excellent anti-interference ability, high stability, rapid response, and can easily distinguish between different concentrations of PGA with the naked eye. The developed paper probes were suitable for practical sensing applications for portable detection of PGA in urine.


Asunto(s)
Luminiscencia , Zinc , Humanos , Agua , Zinc/química
11.
Dalton Trans ; 50(43): 15612-15619, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34668902

RESUMEN

In view of Hg2+ ion sensing by luminescence, a series of new, phenanthroline-decorated 3D lanthanide metal organic frameworks (Ln-MOFs) valorising an original combination of four different lanthanides and two organic ligands, i.e. thiobis(4-methylene-benzoic acid) (H2tmba) and 1,10-phenanthroline (phen), have been successfully synthesized, namely {[Ln4(tmba)6(phen)4]·m(H2O)(phen)}n [Ln = Ce, m = 3 (1); Pr, m = 1 (2); Eu, m = 3 (3); and Tb, m = 3 (4)]. Compounds 1-4 were characterised by single-crystal X-ray diffraction, elemental and thermogravimetric analyses, and powder X-ray diffraction. The luminescence properties of complexes 3 and 4 were thoroughly investigated. It is herein proved that compound 3 sensitively and selectively acts as an excellent luminescent probe for the detection of Hg2+ ions in waters, with a detection limit of 1.00 µM. As additional assets, 3 displays superb stability over a wide pH range (3-12) of the aqueous media, as well as convenient recycling after completion of the detection experiments. The rationale for the observed luminescence quenching effect of mercury might be a strong interaction arising between Hg2+ ions and the carboxylate oxygen atoms of the tmba2- ligand. The results open new perspectives for applications in environmental remediation.

12.
Dalton Trans ; 49(19): 6368-6376, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32347863

RESUMEN

Pd nanoparticles were immobilized on a highly porous, hydrothermally stable Eu-MOF via solution impregnation and H2 reduction to yield a novel Pd@Eu-MOF nanocatalyst. This composite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS). Unprecedentedly, the Pd@Eu-MOF nanocatalyst could be applied with excellent results in two strikingly different, mechanistically distinct, reactions i.e., Suzuki-Miyaura cross-coupling and cycloaddition of CO2 to a range of epoxides. Under the best reaction conditions, 98-99% yields have been attained in both catalytic processes. Moreover, in either case the heterogeneous catalyst was easily recovered and efficiently reused for more than four cycles, indicating its high stability and reproducibility. PXRD, TEM and XPS measurements on the recycled catalyst confirmed that it maintained its original structure and morphology; no Pd NP agglomeration was observed.

13.
RSC Adv ; 10(54): 32652-32661, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35516476

RESUMEN

The generation of hydrogen-based energy and environmental remediation using sunlight is an emerging topic of great significance for meeting the ever-growing global need. However, the actual photocatalytic performance is still far below expectations because of the relatively slack charge-carrier separation and migration as well as insufficient spectral absorption in semiconductors. Therefore, the rational construction of heterojunctions is considered as an effective approach to solving the above issues. In this context, we have, for the first time, designed and synthesized a two-dimensional 2D-on-2D heterostructure, based on 2D Ag-doped ZnIn2S4 nanoplates deposited on 2D g-C3N4 nanosheets (denoted as g-C3N4/Ag:ZnIn2S4). This construct benefits from improved visible-light absorption by unveiling a greater number of catalytically active sites, effectively enhancing charge-carrier separation and relocation. Detailed analysis has proved that under visible-light irradiation, the optimized g-C3N4/20 wt% Ag:ZnIn2S4 nanocomposite has substantially upgraded photocatalytic activity in hydrogen formation by water splitting (hydrogen evolution rate of up to 597.47 µmol h-1 g-1) and in residual dyestuff degradation (methyl orange, MO; degradation rate constant of 0.1406 min-1). Noteworthily, these two exceptionally high values respectively represent 30.73 and 5.42 times enhancements vs. results obtained with bare g-C3N4. Another strong point of our g-C3N4/Ag:ZnIn2S4 is its impressive recyclability for 20 runs, with no relevant metal release in the aqueous solution following photocatalysis. This work introduces new, superior access to highly efficient photocatalysts founded on 2D/2D nanocomposites serving both the production of hydrogen as an energy carrier and environmental remediation.

14.
Dalton Trans ; 48(11): 3676-3686, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30801086

RESUMEN

Rational synthesis of a series of new heterometallic MOFs was carried out by the judicious choice of the corresponding pivalate complexes [Li2M2(piv)6(py)2] (M = Zn2+, Co2+, piv- = pivalate anion and py = pyridine) as a source of secondary building units, {LiM(O2CR)3} and an organic tricarboxylate linker as a node defining the dimensionality of the framework by the orientation of the carboxylic group in or out of the central aromatic ring plane. Thus the trimesate (btc3-) linker results in 3D srs topology frameworks with intersecting systems or isolated channels, and 1,3,5-benzenetribenzoate (btb3-) results in layered hcb isostructural compounds additionally stabilized with H-π interactions between the layers. The layered compounds demonstrate a permanent porosity with a BET surface area of up to 688 m2·g-1 with the possibility of selective gas adsorption (CO2 over N2 and CH4). Zn-Based coordination polymers show notable color changes and drastic (up to 30 times) quenching of luminescence upon inclusion of different nitroaromatics.

15.
RSC Adv ; 9(44): 25638-25646, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35530062

RESUMEN

The solar-to-fuel conversion using a photocatalyst is an ideal method to solve the energy crisis and global warming. In this contribution, photocatalytic H2 production and organic pollutant removal using g-C3N4/CuS composite was demonstrated. Well dispersed CuS nanoparticles (NPs) with a size of about 10 nm were successfully grown on the surface of g-C3N4 nanosheet via a facile hydrothermal method. The as-prepared g-C3N4/CuS nanocomposite at an optimized loading exhibited a much higher visible light photoactivity, giving up to 2.7 times and 1.5 times enhancements in comparison to pure g-C3N4 for photocatalytic H2 production and methylene orange (MO) degradation, respectively. These enhanced photocatalytic activities are attributed to the interfacial transfer of photogenerated electrons and holes between g-C3N4 and CuS, which leads to effective charge separation on both parts. That is, under the visible light irradiation, electrons in the valence band (VB) of g-C3N4 can directly transfer to the CuS NPs, which can act as an electron sink and co-catalyst to promote the separation and transfer of photo-generated electrons, thus significantly improving the photocatalytic efficiency.

16.
J Nanosci Nanotechnol ; 18(12): 8216-8224, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30189940

RESUMEN

To enhance solar energy utilization efficiency, goal-directed design of architectures by combining nanocomponents of radically different properties, such as plasmonic, upconversion, and photocatalytic properties may provide a promising method to utilize the most energy in sunlight. In this work, a new strategy was adopted to fabricate a series of plasmonic Ag nanoparticles decorated GdF3:Yb3+, Er3+, Tm3+-core@porous-TiO2-shell ellipsoids, which exhibit high surface area, good stability, broadband absorption from ultraviolet to near infrared, and excellent photocatalytic activity. The results showed that photocatalytic activities of the as-obtained photocatalysts was higher than that of pure GdF3:Yb3+, Er3+, Tm3+ and GdF3:Yb3+, Er3+, Tm3+@TiO2 samples through the comparison of photodegradation rates of methyl orange under UV, visible, and NIR irradiation. The possible photocatalytic mechanism indicates that hydroxyl radicals and superoxide radical play a pivotal role in the photodegradation. Furthermore, the materials also showed exceptionally high stability and reusability under UV, visible, and NIR irradiation. All these results reveal that core-shell hierarchical ellipsoids exhibit great prospects for developing efficient solar photocatalysts.

17.
J Nanosci Nanotechnol ; 18(12): 8302-8306, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30189951

RESUMEN

A hard template strategy is developed to fabricate the LuBO3: Eu3+/Tb3+ hollow microspheres using a novel multi-step transformation synthetic route for the first time with polystyrene (PS) spheres as the template, followed by the combination of a facile homogeneous precipitation method, an ion-exchange process, and a calcination process. The results show that the as-obtained LuBO3: Eu3+/Tb3+ hollow spheres have a uniform morphology with an average diameter of 1.8 µm and shell thickness of about 80 nm. When used as luminescent materials, the emission colors of LuBO3: Eu3+/Tb3+ samples can be tuned from red, through orange, yellow and green-yellow, to green by simply adjusting the relative doping concentrations of the activator ions under the excitation of ultraviolet (UV) light, which might have potential applications in the field such as light display systems and optoelectronic devices.

18.
Dalton Trans ; 47(26): 8755-8763, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29916506

RESUMEN

An array of heterobimetallic Pd/Ln MOFs (1-4) with Sm, Eu, Tb, Dy as preferred metal nodes and 1,1'-di(p-carboxybenzyl)-2,2'-diimidazole (H2L) as a fairly suitable bifunctional organic linker have been synthesized, fully characterized and tested as catalysts in cross-coupling reactions. These robust MOFs, ensuring a uniform distribution of Pd, showed excellent stability in air and high catalytic activity in Suzuki-Miyaura reactions conducted in neat water, neat ethanol as well as water-ethanol mixture. Depending on the solvent, complex 1 could be effectively recycled 4-8 times without significant loss of catalytic activity. Importantly, this complex was found to be pH responsive in a reversible way, enabling convenient recovery from acidic aqueous solutions, indicating good recyclability as well as environment-friendly separation of the metal residues after the reaction.

19.
R Soc Open Sci ; 5(4): 172186, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29765672

RESUMEN

Hollow lanthanide-doped compounds are some of the most popular materials for high-performance luminescent devices. However, it is challenging to find an approach that can fabricate large-scale and well-crystallized lanthanide-doped hollow structures and that is facile, efficient and of low cost. In this study, YBO3: Eu3+/Tb3+ hollow microspheres were fabricated by using a novel multi-step transformation synthetic route for the first time with polystyrene spheres as the template, followed by the combination of a facile homogeneous precipitation method, an ion-exchange process and a calcination process. The results show that the as-obtained YBO3: Eu3+/Tb3+ hollow spheres have a uniform morphology with an average diameter of 1.65 µm and shell thickness of about 160 nm. When used as luminescent materials, the emission colours of YBO3: Eu3+/Tb3+ samples can be tuned from red, through orange, yellow and green-yellow, to green by simply adjusting the relative doping concentrations of the activator ions under the excitation of ultraviolet light, which might have potential applications in fields such as light display systems and optoelectronic devices.

20.
J Nanosci Nanotechnol ; 18(8): 5822-5827, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29458647

RESUMEN

In this paper, the hollow GdF3 ellipsoids were successfully synthesized through a facile hydrothermal approach. The results indicated that the as-obtained GdF3 sample has an orthorhombic structure and the average length and diameter of the hollow ellipsoids are 750 nm and 350 nm, respectively. The possible formation mechanism of the hollow GdF3 ellipsoids has been presented. The upconversion (UC) luminescence properties of the hollow GdF3: Yb3+/Ln3+ (Ln3+ = Er3+, Tm3+, Ho3+) ellipsoids were systematically investigated, which showed green (Er3+, 4S3/2, 2H11/2 → 4I15/2), blue (Tm3+, 1G4 → 3H6), and green (Ho3+, 5S2 → 5I8) luminescence under 980 nm NIR excitation, respectively. Furthermore, the UC white light was successfully obtained in the GdF3: Yb3+/Er3+/Tm3+ sample through adjusting relative doping concentration of Yb3+, Er3+ and Tm3+ ions. These findings may reveal potential applications in the fields of laser, bioanalysis, optoelectronic and nanoscale devices due to multicolor emissions in the visible region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...