Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
1.
BMC Anesthesiol ; 24(1): 287, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138388

RESUMEN

BACKGROUND: This study aims to comprehend the levels of dry mouth and thirst in patients after general anesthesia, and to identify the factors influencing them. METHODS: The study included all patients transferred to the Post Anesthesia Care Unit (PACU) at the Second Affiliated Hospital of Dalian Medical University between August 2021 and November 2021 after undergoing general anesthesia. A thirst numeric rating scale was utilized to conduct surveys, enabling the assessment of thirst incidence and intensity. Statistical analysis was performed to explore patient thirst levels and the associated factors. RESULTS: The study revealed a thirst incidence rate of 50.8%. Among the thirst intensity ratings, 71.4% of patients experienced mild thirst, 23.0% reported moderate thirst, and 5.6% expressed severe thirst. Single-factor statistical analysis of potential risk factors among the enrolled cases indicated that gender, history of coronary heart disease, surgical duration, intraoperative fluid volume, intraoperative blood loss, intraoperative urine output, and different surgical departments were linked to post-anesthetic thirst in patients undergoing general anesthesia. Multifactorial Logistic regression analysis highlighted age, gender, history of coronary heart disease, fasting duration, and intraoperative fluid volume as independent risk factors for post-anesthetic thirst in patients undergoing general anesthesia. Moreover, age, gender, history of coronary heart disease, and intraoperative fluid volume were also identified as risk factors for varying degrees of thirst. CONCLUSION: The incidence and intensity of post-anesthetic thirst after general anesthesia are relatively high. Their occurrence is closely associated with age, gender, history of coronary heart disease, fasting duration, and intraoperative fluid volume.


Asunto(s)
Anestesia General , Sed , Humanos , Anestesia General/métodos , Femenino , Masculino , Factores de Riesgo , Estudios Transversales , Incidencia , Persona de Mediana Edad , Adulto , Anciano , Complicaciones Posoperatorias/epidemiología , Periodo de Recuperación de la Anestesia
2.
Int J Biol Macromol ; 278(Pt 1): 134627, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128746

RESUMEN

The molecular structures of starch and sugar/sugar alcohol are recognized as critical determinants of starch pasting and retrogradation properties. However, their combined effects on these properties remain elusive. This study for the first time examined the pasting and retrogradation properties of nine starches with diverse molecular structures, both with and without the addition of glucose, sucrose, isomaltose, isomalt, and sorbitol. The presence of sugar/sugar alcohol significantly enhanced starch pasting viscosity. In particular, the variations of the peak viscosity of wheat starch were more pronounced than other starches, possibly due to its distinct molecular structures. The changes in melting temperatures and enthalpy of retrograded starches were complex, varying depending on the type of starch and sugar/sugar alcohol used. For example, the melting peak temperature ranged from 56.45 °C (TS) to 61.9 °C (WMS), and the melting enthalpy ranged from 0.16 J/g (TS) to 5.6 J/g (PES). The micromorphology of retrograded starch revealed agglomeration and needle-like structures, instead of a network structure, after the addition of glucose and sorbitol, respectively. Correlations between starch molecular structure and pasting properties remained largely unchanged, while the relationship between starch molecular structure and retrogradation properties exhibited notable variations after the addition of sugars or sugar alcohols. These findings help a better understanding of the effects of starch molecular structure and the presence of sugar/sugar alcohol on starch pasting and retrogradation properties.

4.
J R Soc Interface ; 21(217): 20240173, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139034

RESUMEN

The Great Gatsby Curve measures the relationship between income inequality and intergenerational income persistence. By using genealogical data of over 245 000 mentor-mentee pairs and their academic publications from 22 different disciplines, this study demonstrates that an academic Great Gatsby Curve exists as well, in the form of a positive correlation between academic impact inequality and the persistence of impact across academic generations. We also provide a detailed breakdown of academic persistence, showing that the correlation between the impact of mentors and that of their mentees has increased over time, indicating an overall decrease in academic intergenerational mobility. We analyse such persistence across a variety of dimensions, including mentorship types, gender and institutional prestige.


Asunto(s)
Mentores , Humanos , Masculino , Femenino , Renta , Factores Socioeconómicos
5.
Environ Sci Technol ; 58(32): 14329-14337, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39088742

RESUMEN

A series of Mn and Fe metal oxide catalysts loaded onto USY, as well as single metal oxides, were prepared and characterized. The effects of interactions between the catalytic components and the introduction of gas phase NO on the catalytic ozonation of toluene were investigated. Characterization showed that there existed strong interactions between MnOx, FeOx, and USY, which enhanced the content of oxygen vacancies and acid sites of the catalysts and thus boosted the generation of reactive oxygen species and the adsorption of toluene. The MnFeOx-USY catalyst with MnOx and FeOx dimetallic oxides exhibited the most excellent performance of catalytic ozonation of toluene. On the other hand, the presence of NOx in reaction gas mixtures significantly promoted both toluene conversion and mineralization, which was attributed to the formation of nitrate species on the catalysts surface and thus the increase of both acid sites and toluene oxidation sites. Meanwhile, the reaction mechanism between O3 and C7H8 was modified in which the strong interactions between MnOx, FeOx, and USY accelerated the reaction progress based on the L-H route. In addition, the formation of the surface nitrate species not only promoted reaction progress following the L-H route but also resulted in the occurrence of the reaction via the E-R route.


Asunto(s)
Ozono , Tolueno , Tolueno/química , Catálisis , Ozono/química , Compuestos Férricos/química , Manganeso/química , Gases/química , Óxidos/química , Óxidos de Nitrógeno/química , Oxidación-Reducción
6.
Cell Death Dis ; 15(7): 533, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068164

RESUMEN

Renal cell carcinoma (RCC) is considered a "metabolic disease" characterized by elevated glycolysis in patients with advanced RCC. Tyrosine kinase inhibitor (TKI) therapy is currently an important treatment option for advanced RCC, but drug resistance may develop in some patients. Combining TKI with targeted metabolic therapy may provide a more effective approach for patients with advanced RCC. An analysis of 14 RCC patients (including three needle biopsy samples with TKI resistance) revealed by sing-cell RNA sequencing (scRNA-seq) that glycolysis played a crucial role in poor prognosis and drug resistance in RCC. TCGA-KIRC and glycolysis gene set analysis identified DEPDC1 as a target associated with malignant progression and drug resistance in KIRC. Subsequent experiments demonstrated that DEPDC1 promoted malignant progression and glycolysis of RCC, and knockdown DEPDC1 could reverse TKI resistance in RCC cell lines. Bulk RNA sequencing (RNA-seq) and non-targeted metabolomics sequencing suggested that DEPDC1 may regulate RCC glycolysis via AKT/mTOR/HIF1α pathway, a finding supported by protein-level analysis. Clinical tissue samples from 98 RCC patients demonstrated that DEPDC1 was associated with poor prognosis and predicted RCC metastasis. In conclusion, this multi-omics analysis suggests that DEPDC1 could serve as a novel target for TKI combined with targeted metabolic therapy in advanced RCC patients with TKI resistance.


Asunto(s)
Carcinoma de Células Renales , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Renales , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Humanos , Glucólisis/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Línea Celular Tumoral , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Transducción de Señal , Ratones , Animales , Masculino , Femenino , Ratones Desnudos , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica
7.
Mol Cell Probes ; 77: 101977, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39074568

RESUMEN

OBJECTIVE: Utilizing transcriptome analysis to investigate the mechanisms and therapeutic approaches for cisplatin resistance in non-small cell lung cancer (NSCLC). METHODS: Firstly, the biological characters of A549 cells and A549/DDP cells were detected by RNA sequencing, CCK-8 and hippocampal energy analyzer. Then, the differential Genes were functionally enriched by GO and KEGG and the competitive endogenous RNA network map was constructed. Finally, the effects of the predicted biogenesis pathway on the biological functions of A549/DDP cells were verified by in vitro and in vivo experiments. RESULT: The differentially transcribed genes of A549 and A549/DDP cells were analyzed by enrichment analysis and cell biological characteristics detection. The results showed that A549/DDP cells showed significantly increased resistance to cisplatin, glucose metabolism signaling pathway and glycolysis levels compared with A549 cells. Among glycolysis-related transcription genes, PKM had the most significant difference Fold Change is 8. LncRNA PCIF1 is a new marker of A549/DDP cells and can be used as a molecular sponge to regulate the expression of PKM. LncRNA PCIF1 targets miR-326 to induce PKM expression, promote glycolysis level, and enhance the resistance of A549/DDP cells to cisplatin. CONCLUSION: LncRNA PCIF1 as biomarkers of A549/DDP cells, higher expression can induce the PKM, promote cell glycolysis, lead to the occurrence of cisplatin resistance. LncRNA PCIF1 can be considered as a potential target for treating cisplatin-resistant NSCLC.

8.
Zookeys ; 1205: 349-371, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984212

RESUMEN

Cincticostellajianchuan sp. nov. from Dali Bai Autonomous Prefecture, Yunnan Province, China, is described based on chorionic structure, nymph, and winged stages. The new species is closely related to C.fusca (Kang & Yang, 1995), but it can be distinguished in the male imago stage by its mesonotum and penes morphology, coloration, and the forking point of the stem of MA+Rs on the forewing; in the nymph stage, it can be distinguished by the length of the posterolateral projections of abdominal segment IX and the setation of the abdominal terga. Compared to other congeners, nymphs and male imagoes of the new species and C.fusca share several morphological characteristics, such as a larger body, mesothorax with medially notched anterolateral projections, forefemur without a subapical band of transverse spines of the nymphs, the area between C, Sc and R1 of the forewings distinctly pigmented, and an apical sclerite on the ventral face of the penes of the male imagoes, supporting the proposition of a new species complex, the jianchuan complex. The systematics of Cincticostella and related genera are discussed briefly.

9.
Cardiovasc Diabetol ; 23(1): 232, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965572

RESUMEN

BACKGROUND: The prognostic value of triglyceride-glucose (TyG) related indices in non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) is still unclear. This study aimed to determine the associations between TyG-related indices and long-term mortality in this population. METHODS: The data came from the National Health and Nutrition Examination Survey (NHANES III) and National Death Index (NDI). Baseline TyG, TyG combining with body mass index (TyG-BMI), and TyG combining with waist circumference (TyG-WC) indices were calculated, and mortality status was determined through 31 December 2019. Multivariate Cox and restricted cubic spline (RCS) regression models were performed to evaluate the relationship between TyG-related indices and long-term mortality among participants with NAFLD/MASLD. In addition, we examined the association between TyG-related indices and all-cause mortality within subgroups defined by age, sex, race/ethnicity, and fibrosis-4 index (FIB-4). RESULTS: There were 10,390 participants with completed ultrasonography and laboratory data included in this study. NAFLD was diagnosed in 3672/10,390 (35.3%) participants, while MASLD in 3556/10,390 (34.2%) amongst the overall population. The multivariate Cox regression analyses showed high levels of TyG-related indices, particularly in TyG-BMI and TyG-WC indices were significantly associated with the all-cause mortality, cardiovascular mortality, and diabetes mortality in either NAFLD or MASLD. The RCS curves showed a nonlinear trend between three TyG-related indices with all-cause mortality in either NAFLD or MASLD. Subgroup analyses showed that TyG-BMI and TyG-WC indices were more suitable for predicting all-cause mortality in patients without advanced fibrosis. CONCLUSION: Our study highlights the clinical value of TyG-related indices in predicting the survival of the NAFLD/MASLD population. TyG-BMI and TyG-WC indices would be the surrogate biomarkers for the follow-up of the population without advanced fibrosis.


Asunto(s)
Biomarcadores , Glucemia , Enfermedad del Hígado Graso no Alcohólico , Encuestas Nutricionales , Triglicéridos , Humanos , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/mortalidad , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Triglicéridos/sangre , Medición de Riesgo , Glucemia/metabolismo , Biomarcadores/sangre , Adulto , Pronóstico , Factores de Riesgo , Factores de Tiempo , Anciano , Estados Unidos/epidemiología , Causas de Muerte , Valor Predictivo de las Pruebas , Índice de Masa Corporal , Hígado Graso/mortalidad , Hígado Graso/sangre , Hígado Graso/diagnóstico , Circunferencia de la Cintura
11.
J Psychiatr Res ; 176: 119-128, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852542

RESUMEN

Proteomics has been widely used to investigate multiple diseases. Combining the analyses of proteomics with phosphoproteomics can be used to further explain the pathological mechanisms of depression. In this study, depression-like behavior was induced in a rat model of chronic unpredictable mild stress (CUMS). We subsequently conducted the sucrose preference test, open field experiment, and forced swimming test to assess depressive-like behavior. Proteomic and phosphoproteomic sequencing of the hippocampal tissues from depressive-like behavior and normal rats were analyzed to identify differentially expressed proteins (DEPs) and differentially phosphorylated proteins (DPPs). Differentially expressed phosphorylated proteins (DEPPs) were obtained by intersecting the DEPs and DPPs, and functional enrichment analysis, as well as ingenuity pathway analysis (IPA), were subsequently performed. The study also investigated correlations among the DEPPs and used qRT-PCR to quantify the expression levels of key genes. Five DEPPs were identified, Gys1, Nmt2, Lrp1, Bin1, and Atp1a1, which were found to activate the synaptogenesis signaling pathway, induce mitochondrial dysfunction, and activate the phosphoinositide biosynthesis and degradation pathways. The qRT-PCR results confirmed the proteomic findings for Gys1, Nmt2, Lrp1, and Atp1a1. Importantly, inhibiting Nmt2 was found to alleviate depression-like behavior and alleviate neuronal apoptosis in the hippocampus of CUMS rats. In conclusion, we identified five DEPPs associated with the synaptogenesis signaling pathway, mitochondrial dysfunction, and phosphoinositide biosynthesis and degradation in depression. Furthermore, NMT2 may be a potential target for the treatment or diagnosis of depression. Our findings provide novel insights into the molecular mechanisms of depression.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Hipocampo , Proteómica , Ratas Sprague-Dawley , Estrés Psicológico , Animales , Estrés Psicológico/metabolismo , Masculino , Ratas , Depresión/metabolismo , Hipocampo/metabolismo , Conducta Animal/fisiología , Fosfoproteínas/metabolismo , Antidepresivos/farmacología
12.
Bioact Mater ; 39: 427-442, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38855061

RESUMEN

Introduction: Cartilage defect (CD) is a common complication in osteoarthritis (OA). Impairment of chondrogenesis and cellular senescence are considered as hallmarks of OA development and caused failure of cartilage repair in most clinical CD cases. Exploring markers for cellular senescence in CD patients might provide new perspectives for osteoarthritic CD patients. In the present study, we aim to explore senescent markers in CD patients with OA to fabricate a senescence-targeted SMSC organoid hydrogel for cartilage repair. Methods: Clinical cartilage samples from cartilage defect patients were collected. Immunofluorescence staining of senescent markers and SA-ß-Gal staining were used to detect the senescence state of SMSCs and chondrocytes in cartilage defect and OA patients. MicroRNA expression profiles of SMSC organoids and H2O2-treated SMSC organoids were analyzed and compared with high-throughput microRNA sequencing. Fluorescent in situ hybridization of miRNA were used to determine the expression level of miR-24 in SMSC organoids and cartilage samples. Interaction between miR-24 and its downstream target was analyzed via qRT-PCR, immunofluorescence and luciferase assay. Senescence-targeted miR-24 µS/SMSC organoid hydrogel (MSOH) was constructed for cartilage repair. Anti-senescence properties and chondrogenesis were determined in vitro for MSOH. Rats were used to evaluate the cartilage repair capacity of the MSOH hydrogel in vivo. Results: In this study, we found Osteoarthritic cartilage defect patients demonstrated upregulated cellular senescence in joint cartilage. MicroRNA sequencing demonstrated senescence marker miR-24 was negatively associated with cartilage impairment and cellular senescence in osteoarthritic CD patients. Moreover, miR-24 mimics alleviates cellular senescence to promote chondrogenesis by targeting downstream TAOK1. Also, miR-24 downregulated TAOK1 expression and promoted chondrogenesis in SMSC organoids. Senescence-targeted miR-24 µS/SMSC organoid hydrogel (MSOH) was constructed and demonstrated superior chondrogenesis in vitro. Animal experiments demonstrated that MSOH hydrogel showed better cartilage repairing effects and better maintained joint function at 24 weeks with low intra-articular inflammatory response after transplantation in rat joint. Single-cell RNA-seq of generated cartilage indicated that implanted MSOH could affect chondrocyte homeostatic state and alter the chondrocyte cluster frequency by regulating cellular glycolysis and OXPHOS, impacting cell cycle and ferroptosis to alleviate cellular senescence and prevent joint degeneration. Conclusion: Osteoarthritic cartilage defect patients demonstrated upregulated cellular senescence in joint cartilage. Senescence marker miR-24 was negatively associated with cartilage impairment in osteoarthritic CD patients. miR-24 attenuates chondrocytes senescence and promotes chondrogenesis in SMSC organoids through targeting TAOK1. Senescence-targeted miR-24 microsphere/SMSC organoid composite hydrogel could successfully repair cartilage defect in osteoarthritic microenvironment via enhanced miR-24/TAOK1 signaling pathway, suggesting MSOH might be a novel therapy for cartilage repair in osteoarthritic CD patients.

13.
Plants (Basel) ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38891296

RESUMEN

Castanopsis chinensis (Spreng.) Hance is widespread in the subtropical forests of China. Castanopsis qiongbeiensis G.A. Fu and Castanopsis glabrifolia J. Q. Li & Li Chen are limited to the coastal beaches of Wenchang county in the northeast of Hainan Island, and have similar morphological characteristics to C. chinensis. It is supposed that C. qiongbeiensis and C. glabrifolia are closely related to C. chinensis. In the present study, the genetic differentiation, gene flow, and genetic relationship of C. chinensis, C. qiongbeiensis, and C. glabrifolia were investigated by using 15 nuclear microsatellite markers; a total of 308 individuals from 17 populations were sampled in the three species. The allelic variation of nuclear microsatellites revealed moderate but significant genetic differentiation (FCT = 0.076) among C. chinensis, C. qiongbeiensis, and C. glabrifolia, and genetic differentiation between C. chinensis and C. glabrifolia was larger than that between C. chinensis and C. qiongbeiensis. Demographic simulations revealed unidirectional gene flow from C. chinensis to C. glabrifolia and C. qiongbeiensis, which highlight dispersal from mainland to island. The isolation effect of Qiongzhou Strait increased the genetic differentiation of species on both sides of the strait; however, the differentiation was diminished by gene flow that occurred during the historical period when Hainan Island was connected to mainland China. Our results supported the argument that C. glabrifolia should be considered an independent species and argued that C. qiongbeiensis should be regarded as an incipient species and independent conservation unit.

14.
Int J Biol Macromol ; 272(Pt 2): 132919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843673

RESUMEN

Poly (vinyl alcohol) (PVA) hydrogel showed potential applications in bioengineering and wearable sensors fields. It is still a huge challenge to prepare highly adhesive yet strong poly (vinyl alcohol) hydrogel with good biocompatibility. Herein, we prepared a highly self-adhesive and strong poly (vinyl alcohol)/tannic acid@cellulose nanocrystals (PVA/TA@CNCs) composite hydrogel using TA@CNCs as functional nanofiller via facile freezing-thawing method. Multiple networks consisting of hydrogen bonding and coordination interactions endowed the hydrogel with high mechanical strength, excellent flexibility and fracture toughness with adequate energy dissipation mechanism and relatively dense network structure. The tensile strength of PVA/TA@CNCs hydrogel reached the maximum of 463 kPa, increasing by 367 % in comparison with pure PVA hydrogel (99 kPa), demonstrating the synergistic reinforcing and toughening effect of TA@CNCs. The hydrogel exhibited extremely high adhesion not only for various dry and wet substrates such as plastic, metal, Teflon, rubber, glass, leaf, but also sweaty human skin, showing good adhesion durability. The highest adhesion strength to silicone rubber, steel plate and pigskin could reach 197 kPa, 100 kPa and 46.9 kPa, respectively. Meanwhile the hydrogel had negligible cytotoxicity to cells and showed good biocompatibility.


Asunto(s)
Celulosa , Hidrogeles , Nanopartículas , Alcohol Polivinílico , Alcohol Polivinílico/química , Celulosa/química , Nanopartículas/química , Humanos , Hidrogeles/química , Resistencia a la Tracción , Materiales Biocompatibles/química , Adhesivos/química , Animales
15.
Angiogenesis ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922557

RESUMEN

BACKGROUND: Pathological angiogenesis causes significant vision loss in neovascular age-related macular degeneration and other retinopathies with neovascularization (NV). Neuronal/glial-vascular interactions influence the release of angiogenic and neurotrophic factors. We hypothesized that botulinum neurotoxin serotype A (BoNT/A) modulates pathological endothelial cell proliferation through glial cell activation and growth factor release. METHODS: A laser-induced choroidal NV (CNV) was employed to investigate the anti-angiogenic effects of BoNT/A. Fundus fluorescence angiography, immunohistochemistry, and real-time PCR were used to assess BoNT/A efficacy in inhibiting CNV and the molecular mechanisms underlying this inhibition. Neuronal and glial suppressor of cytokine signaling 3 (SOCS3) deficient mice were used to investigate the molecular mechanisms of BoNT/A in inhibiting CNV via SOCS3. FINDINGS: In laser-induced CNV mice with intravitreal BoNT/A treatment, CNV lesions decreased > 30%; vascular leakage and retinal glial activation were suppressed; and Socs3 mRNA expression was induced while vascular endothelial growth factor A (Vegfa) mRNA expression was suppressed. The protective effects of BoNT/A on CNV development were diminished in mice lacking neuronal/glial SOCS3. CONCLUSION: BoNT/A suppressed laser-induced CNV and glial cell activation, in part through SOCS3 induction in neuronal/glial cells. BoNT/A treatment led to a decrease of pro-angiogenic factors, including VEGFA, highlighting the potential of BoNT/A as a therapeutic intervention for pathological angiogenesis in retinopathies.

17.
Life Sci ; 350: 122742, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797365

RESUMEN

AIMS: Intramuscular fat (IMF) infiltration and extracellular matrix (ECM) deposition are characteristic features of muscle dysfunction, such as muscular dystrophy and severe muscle injuries. However, the underlying mechanisms of cellular origin, adipocyte formation and fibrosis in skeletal muscle are still unclear. MAIN METHODS: Pigs were injected with 50 % glycerol (GLY) to induce skeletal muscle injury and regeneration. The acyl chain composition was analyzed by lipidomics, and the cell atlas and molecular signatures were revealed via single-cell RNA sequencing (scRNA-seq). Adipogenesis analysis was performed on fibroblast/fibro-adipogenic progenitors (FAPs) isolated from pigs. KEY FINDINGS: The porcine GLY-injured skeletal muscle regeneration model was characterized by IMF infiltration and ECM deposition. Skeletal muscle stem cells (MuSCs) and FAP clusters were analyzed to explore the potential mechanisms of adipogenesis and fibrosis, and it was found that the TGF-ß signaling pathway might be a key switch that regulates differentiation. Consistently, activation of the TGF-ß signaling pathway increased SMAD2/3 phosphorylation and inhibited adipogenesis in FAPs, while inhibition of the TGF-ß signaling pathway increased the expression of PPARγ and promoted adipogenesis. SIGNIFICANCE: GLY-induced muscle injury and regeneration provides comprehensive insights for the development of therapies for human skeletal muscle dysfunction and fatty infiltration-related diseases in which the TGF-ß/SMAD signaling pathway might play a primary regulatory role.


Asunto(s)
Adipogénesis , Glicerol , Lipidómica , Músculo Esquelético , Regeneración , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Porcinos , Glicerol/metabolismo , Adipogénesis/efectos de los fármacos , Lipidómica/métodos , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Modelos Animales de Enfermedad , Diferenciación Celular , Metabolismo de los Lípidos/efectos de los fármacos
18.
Artículo en Inglés | MEDLINE | ID: mdl-38717009

RESUMEN

BACKGROUND: Pathogenic variants in hnRNPA1 have been reported in amyotrophic lateral sclerosis (ALS) patients. However, studies on hnRNPA1 mutant spectrum and pathogenicity of variants were rare. METHODS: We performed whole exome sequencing of ALS-associated genes and subsequent verification of rare variants in hnRNPA1 in our ALS patients. The hnRNPA1 mutations reported in literature were reviewed and combined with our results to determine the genotype-phenotype relationship. Functional analysis of the novel variant p.G195A was performed in vitro by transfection of mutant hnRNPA1 into 293T cell. RESULTS: Among 207 ALS patients recruited, 3 rare hnRNPA1 variants were identified (mutant frequency 1.45%), including two recurrent mutations (p.P340S and p.G283R), and a novel rare variant p.G195A. In combination with previous reports, there are 27 ALS patients with 15 hnRNPA1 mutations identified. Disease onset age was 47.90 ± 1.52 years with predominant limb onset. The p.P340S mutation caused flail arm syndrome (FAS) in two independent families with extended life expectancy. The newly identified p.G195A mutation, lying at the start of the PrLD ("prion-like" domain)/LCD (low-complexity domain), causes local structural changes in 3D protein prediction. Upon sodium arsenite exposure, mutant hnRNPA1 retained in the nucleus but deficit of cytoplasmic G3BP1-positive stress granule clearance was observed. This is different from the p.P340S mutation which caused both cytoplasmic translocation and stress granule formation. No cytoplasmic TDP-43 translocation was observed. CONCLUSION: Mutations in hnRNPA1 are overall minor in ALS patients. The p.P340S mutation is associated with manifestation of FAS. Mutations in LCD of hnRNPA1 cause stress granule misprocessing.


Asunto(s)
Esclerosis Amiotrófica Lateral , Estudios de Asociación Genética , Ribonucleoproteína Nuclear Heterogénea A1 , Mutación , Humanos , Esclerosis Amiotrófica Lateral/genética , Ribonucleoproteína Nuclear Heterogénea A1/genética , Masculino , Persona de Mediana Edad , Femenino , Mutación/genética , Estudios de Asociación Genética/métodos , Adulto , Secuenciación del Exoma , Anciano
19.
Artículo en Inglés | MEDLINE | ID: mdl-38778596

RESUMEN

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system and is a leading cause of disability in young adults. Most therapeutic strategies are based on immunosuppressant effects. However, none of the drugs showed complete remission and may result in serious adverse events such as infection. Mesenchymal stem cells (MSCs) have gained much attention and are considered a potential therapeutic strategy owing to their immunomodulatory effects and neuroprotective functions. Experimental autoimmune encephalomyelitis (EAE), a classical animal model for MS, is widely used to explore the efficacy and mechanism of MSC transplantation. This review summarises the therapeutic mechanism of MSCs in the treatment of EAE, including the effects on immune cells (T cells, B cells, dendritic cells, natural killer cells) and central nervous system-resident cells (astroglia, microglia, oligodendrocytes, neurons) as well as various strategies to improve the efficacy of MSCs in the treatment of EAE. Additionally, we discuss the clinical application of MSCs for MS patients as well as the challenges and prospects of MSC transplantation.

20.
Biochem Biophys Res Commun ; 721: 150128, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38776831

RESUMEN

PURPOSE: Chronic stress is a significant risk factor for mood disorders such as depression, where synaptic plasticity plays a central role in pathogenesis. Transient Receptor Potential Vanilloid Type-2 (TRPV2) Ion Channels are implicated in hypothalamic-pituitary-adrenal axis disorders. Previous proteomic analysis indicated a reduction in TRPV2 levels in the chronic unpredictable mild stress (CUMS) rat model, yet its role in synaptic plasticity during depression remains to be elucidated. This study aims to investigate TRPV2's role in depression and its underlying mechanisms. METHODS: In vivo and in vitro experiments were conducted using the TRPV2-specific agonist probenecid and ERK1/2 inhibitors SCH772984. In vivo, rats underwent six weeks of CUMS before probenecid administration. Depressive-like behaviors were assessed through behavioral tests. ELISA kits measured 5-HT, DA, NE levels in rat hippocampal tissues. Hippocampal morphology was examined via Nissl staining. In vitro, rat hippocampal neuron cell lines were treated with ERK1/2 inhibitors SCH772984 and probenecid. Western blot, immunofluorescence, immunohistochemical staining, and RT-qPCR assessed TRPV2 expression, neurogenesis-related proteins, synaptic markers, and ERK1/2-CREB-BDNF signaling proteins. RESULTS: Decreased hippocampal TRPV2 levels were observed in CUMS rats. Probenecid treatment mitigated depressive-like behavior and enhanced hippocampal 5-HT, NE, and DA levels in CUMS rats. TRPV2 activation countered CUMS-induced synaptic plasticity inhibition. Probenecid activated the ERK1/2-CREB-BDNF pathway, suggesting TRPV2's involvement in this pathway via ERK1/2. CONCLUSION: These findings indicate that TRPV2 activation offers protective effects against depressive-like behaviors and enhances hippocampal synaptic plasticity in CUMS rats via the ERK1/2-CREB-BDNF pathway. TRPV2 emerges as a potential therapeutic target for depression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Hipocampo , Sistema de Señalización de MAP Quinasas , Plasticidad Neuronal , Ratas Sprague-Dawley , Estrés Psicológico , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Plasticidad Neuronal/efectos de los fármacos , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/metabolismo , Depresión/tratamiento farmacológico , Enfermedad Crónica , Probenecid/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...