Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Int J Biol Macromol ; 279(Pt 4): 135480, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39265901

RESUMEN

Herein, the identification and analysis of a newly discovered hypolipidemic polysaccharide extracted from Suaeda salsa L., SS3-N1, is reported. The weight-average molecular weight (Mw), number-average molecular weight (Mn), and dispersity (Ð) of SS3-N1 were determined to be 45.50 kDa, 34.21 kDa, and 1.33, respectively. This polysaccharide primarily consists of galactose (50.80 %) and arabinose (30.70 %), with lower proportions of xylose, mannose, guluronic acid, rhamnose, glucuronic acid, ribose, and fucose. Methylation and NMR analyses indicated that its backbone was primarily composed of R â†’ 3,6)-ß-D-Galp-(1 â†’ R and R â†’ 5)-α-L-Araf-(1→ residues. The sugar units at the reducing and nonreducing ends were identified as R â†’ 4)-ß-D-Xylp-(1 â†’ R and R â†’ 3)-ß-D-Galp-(1 â†’ R, respectively. In addition, α-L-Araf (1 â†’ R side branches were incorporated at the C-3 position of R â†’ 3,6)-ß-D-Galp-(1 â†’ R. At 100 µg/mL, SS3-N1 surpassed the lipid-lowering efficacy of the positive control, atorvastatin (0.4 µM), in an egg yolk powder (EYP)-induced hyperlipidemic zebrafish model. This effect may be attributed to the modulation of cholesterol metabolism due to the upregulation of nrf2, ho-1, ampk, ppara, and cyp7a1 gene expression and the downregulation of acaca and hmgcr gene expression. Such dual gene regulation inhibits fatty acid and cholesterol synthesis, suggesting potential applications for the natural hypolipidemic polysaccharide derived from S. salsa L.

2.
J Virol ; : e0090224, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324793

RESUMEN

The life cycle of foot-and-mouth disease virus (FMDV) is tightly regulated by host cell lipid metabolism. In previous studies, we reported downregulated expression of stearoyl coenzyme A desaturase-1 (SCD1), a key enzyme of fatty acid metabolism, in BHK-VEC cells (a virus-negative cell line derived from BKH-21 cells with persistent FMDV infection) on comparing transcriptomic data for BHK-VEC and BHK-21 cells (Y. Yuan et al., Front Cell Infect Microbiol 12:940906, 2022, https://doi.org/10.3389/fcimb.2022.940906; L. Han et al., Vet Microbiol 263:109247, 2021, https://doi.org/10.1016/j.vetmic.2021.109247). In the present study, we identify that SCD1 regulates FMDV replication. SCD1 overexpression or exogenous addition of oleic acid (OA), a product of the enzymatic activity of SCD1, increased FMDV replication in both BHK-21 cells and SCD1-knockdown cells. Overexpression of SCD1 or exogenous addition of OA restored FMDV infection and replication in BHK-VEC cells, and OA also promoted FMDV replication in BHK-21 cells with persistent FMDV infection. SCD1 recruited the nonstructural FMDV protein 2C to a detergent-resistant membrane located in the perinuclear region of cells to form replication complexes. Inhibiting SCD1 enzyme activity resulted in a significantly decreased number of FMDV replication complexes with abnormal morphology. Inhibition of SCD1 activity also effectively decreased the replication of other RNA viruses such as respiratory enteric orphan virus-3-176, poliovirus-1, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that SCD1, as a key host regulator of RNA virus replication, is a potential target for developing novel drugs against infections by RNA viruses. IMPORTANCE: Many positive-stranded RNA viruses, including foot-and-mouth disease virus (FMDV), alter host membranes and lipid metabolism to create a suitable microenvironment for their survival and replication within host cells. In FMDV-infected cells, the endoplasmic reticulum membrane is remodeled, forming vesicular structures that rely heavily on increased free fatty acids, thereby linking lipid metabolism to the FMDV replication complex. Nonstructural FMDV protein 2C is crucial for this complex, while host cell enzyme stearoyl coenzyme A desaturase 1 (SCD1) is vital for lipid metabolism. We found that FMDV infection alters SCD1 expression in host cells. Inhibiting SCD1 expression or its enzymatic activity markedly decreases FMDV replication, while supplementing oleic acid, a catalytic product of SCD1, regulates FMDV replication. Additionally, SCD1 forms part of the FMDV replication complex and helps recruit 2C to a detergent-resistant membrane. Our study provides insights into the pathogenesis of FMDV and a potential novel drug target against the virus.

3.
Aging (Albany NY) ; 162024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39316420

RESUMEN

Aging of epidermal keratinocytes profoundly impacts skin health, contributing to changes in appearance, barrier function, and susceptibility to diseases. Despite its significance, the molecular mechanisms underlying epidermal aging remain elusive. In this study, a reversible immortalized cell line was established by expressing SV40T in keratinocytes using the Tet-Off lentiviral system. Inducing a senescent phenotype by terminating SV40T expression revealed a significant reduction in mitotic ability, as well as characteristics of cellular aging. RNA sequencing analysis revealed alterations in gene expression and signaling pathways including DNA repair dysfunction, notably senescence-associated secretory phenotype (SASP)-related genes, such as MMP1, SERPINB2 and VEGFA. Our study provides insights into the molecular mechanisms of epidermal aging, offering potential therapeutic targets and highlighting the role of SASP in the aging process.

4.
Int J Nurs Stud ; 160: 104887, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39278195

RESUMEN

BACKGROUND: Current evidence that supports palliative care interventions predominantly focuses on individuals with cancer or hospitalized patients. However, the effectiveness of palliative care on patient-reported outcomes and mortality in community-dwelling adults with heart failure has not been evaluated. OBJECTIVE: We aimed to evaluate the effectiveness of palliative care interventions on patient-reported outcomes and all-cause mortality in community-dwelling adults with heart failure. DESIGN: A systematic review and meta-analysis of randomized controlled trials. METHODS: MEDLINE, Embase, Cochrane Library, and CINAHL databases were searched from inception to October 2023. Randomized controlled trials were considered if they compared palliative care interventions with usual care, attention control, or waiting-list control primarily in a community-dwelling heart failure patient population. The primary outcome was patient-reported generic health-related or heart failure-specific quality of life. Secondary outcomes were patient-reported symptom burden, psychological health (anxiety and depression), spiritual well-being, and all-cause mortality. Two independent reviewers screened the retrieved articles and extracted data from the included studies. A random-effects meta-analysis was performed to pool the data, followed by sensitivity analysis, subgroup analysis, and meta-regression. All analyses were performed using R version 4.2.2. RESULTS: Eleven eligible studies were included in this review with a total of 1535 patients. Compared to usual care, palliative care interventions demonstrated statistically significant effects on improving generic health-related quality of life (SMD, 0.30 [95 % CI, 0.12 to 0.48]) and heart failure-specific quality of life (SMD, 0.17 [95 % CI, 0.03 to 0.31]). Palliative care interventions also reduced anxiety (SMD, -0.22 [95 % CI, -0.40 to -0.05]) and depression (SMD, -0.18 [95 % CI, -0.33 to -0.03]), and enhanced spiritual well-being (SMD, 0.43 [95 % CI, 0.05 to 0.81]), without adversely affecting all-cause mortality (RR, 1.00 [95 % CI, 0.76 to 1.33]). Yet, the interventions had no significant effects on symptom burden (SMD, -0.09 [95 % CI, -0.40 to 0.21]). The certainty of evidence across the outcomes ranged from very low to moderate based on the GRADE approach. CONCLUSIONS: Palliative care interventions are beneficial for community-dwelling adults with heart failure in that the interventions improved patient-reported quality of life, psychological health, and spiritual well-being, and importantly, did not lead to higher mortality rates. Findings of this review support the implementation of palliative care for adults with heart failure in community settings. REGISTRATION: CRD42023482495.

5.
Stem Cells ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283950

RESUMEN

CRISPR-Cas9 editing triggers activation of the TP53-p21 pathway, but the impacts of different editing components and delivery methods have not been fully explored. In this study, we introduce a p21-mNeonGreen reporter iPSC line to monitor TP53-p21 pathway activation. This reporter enables dynamic tracking of p21 expression via flow cytometry, revealing a strong correlation between p21 expression and indel frequencies, and highlighting its utility in guide RNA screening. Our findings show that p21 activation is significantly more pronounced with double-stranded oligodeoxynucleotides (ODNs) or adeno-associated viral vectors (AAVs) compared to their single-stranded counterparts. Lentiviral vectors (LVs) and integrase-defective lentiviral vectors (IDLVs) induce notably lower p21 expression than AAVs, suggesting their suitability for gene therapy in sensitive cells such as hematopoietic stem cells or immune cells. Additionally, specific viral promoters like SFFV significantly amplify p21 activation, emphasizing the critical role of promoter selection in vector development. Thus, the p21-mNeonGreen reporter iPSC line is a valuable tool for assessing the potential adverse effects of gene editing methodologies and vectors.

6.
Cell Rep ; 43(9): 114682, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39207899

RESUMEN

Signaling-dependent changes in protein phosphorylation are critical to enable coordination of transcription and metabolism during macrophage activation. However, the role of acetylation in signal transduction during macrophage activation remains obscure. Here, we identify the redox signaling regulator peroxiredoxin 1 (PRDX1) as a substrate of the lysine acetyltransferase MOF. MOF acetylates PRDX1 at lysine 197, preventing hyperoxidation and thus maintaining its activity under stress. PRDX1 K197ac responds to inflammatory signals, decreasing rapidly in mouse macrophages stimulated with bacterial lipopolysaccharides (LPSs) but not with interleukin (IL)-4 or IL-10. The LPS-induced decrease of PRDX1 K197ac elevates cellular hydrogen peroxide accumulation and augments ERK1/2, but not p38 or AKT, phosphorylation. Concomitantly, diminished PRDX1 K197ac stimulates glycolysis, potentiates H3 serine 28 phosphorylation, and ultimately enhances the production of pro-inflammatory mediators such as IL-6. Our work reveals a regulatory role for redox protein acetylation in signal transduction and coordinating metabolic and transcriptional programs during inflammatory macrophage activation.


Asunto(s)
Lipopolisacáridos , Activación de Macrófagos , Macrófagos , Peroxirredoxinas , Animales , Acetilación , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Ratones , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Fosforilación , Inflamación/metabolismo , Inflamación/patología , Humanos , Ratones Endogámicos C57BL , Células RAW 264.7 , Histona Acetiltransferasas/metabolismo , Interleucina-6/metabolismo , Glucólisis , Transducción de Señal , Peróxido de Hidrógeno/metabolismo
7.
J Phys Chem Lett ; 15(35): 9122-9128, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39207063

RESUMEN

The application of membrane electrode assembly (MEA) in electrocatalytic CO2 reduction (ECO2R) technology is an essential step toward industrialization. Nevertheless, the issue of ECO2R failure in MEA during extended operation hinders its industrial application. In this work, we employed in situ, nondestructive electrochemical impedance spectroscopy (EIS) techniques combined with distribution of relaxation times (DRT) methodology to diagnose the causes of the failure. By systematically investigating the variations in polarization resistance throughout the degradation process and utilizing a controlled variable approach to identify the origin of polarization, we diagnosed the degeneration of ionomers as the primary cause of the performance degradation of ECO2R in this instance. We further confirmed the reliability of our findings through material characterization and respraying ionomers onto the catalyst surface. This research provides an effective diagnostic method for the failure analysis of ECO2R performance in MEA, which is crucial for advancing industrialization of ECO2R technology.

8.
Biomed Chromatogr ; : e5966, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021259

RESUMEN

The metabolites of sweroside were first investigated in vivo with ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) in combination with 2,4-dinitrophenylhydrazine derivatization. In addition, the mass detection sensitivity of the major metabolites, epinaucledal and naucledal, via UPLC-TOF-MS was significantly enhanced, and the epimer metabolites were distinctly discovered from plasma following gavage of sweroside in rats. The plasma concentration of epinaucledal and naucledal was quantified via UPLC-TOF-MS in negative mode using erythrocentaurin as the internal standard. The maximum mean plasma concentrations of naucledal and epinaucledal were 75.36 ± 20.10 and 43.52 ± 15.60 ng/ml within 2 h, respectively, following gavage of sweroside at 20 mg/kg. Moreover, the area under the concentration-time curve of naucledal was three times that of epinaucledal. The metabolic process of conversion of sweroside to epinaucledal and naucledal was deduced, and the pharmacological effects of epinaucledal and naucledal will clarify the clinical efficacy of sweroside.

9.
Angew Chem Int Ed Engl ; : e202410936, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014295

RESUMEN

Multiplexed fluorescence in vivo imaging remains challenging due to the attenuation and scattering of visible and traditional near infrared (NIR-I, 650 - 950 nm) wavelengths. Fluorescence imaging using short-wave infrared (SWIR, 1000 - 1700 nm, a.k.a. NIR-II) light enables deeper tissue penetration due to reduced tissue scattering as well as minimal background autofluorescence. SWIR-emitting semiconductor quantum dots (QDs) with tunable emission peaks and optical stability are powerful contrast agents, yet few imaging demonstrations exclusively use SWIR emission beyond two-color imaging schemes. In this study, we engineered three high quality lead sulfide/cadmium sulfide (PbS/CdS) core/shell QDs with distinct SWIR emission ranging from 1100 - 1550 nm for simultaneous three-color imaging in mice. We first use the exceptional photostability of QDs to non-invasively track lymphatic drainage with longitudinal imaging, highlighting the detailed networks of lymphatic vessels with widefield imaging over a 2 hr period. We then perform multiplexed imaging with all three QDs to distinctly visualize the lymphatic system and spatially overlapping vasculature networks, including clearly distinguishing the liver and spleen. This work establishes optimized SWIR QDs for next-generation multiplexed and longitudinal preclinical imaging, unlocking numerous opportunities for preclinical studies of disease progression, drug biodistribution, and cell trafficking dynamics in living organisms.

10.
Cell Prolif ; : e13687, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864666

RESUMEN

Metabolic balance is essential for oocyte maturation and acquisition of developmental capacity. Suboptimal conditions of in vitro cultures would lead to lipid accumulation and finally result in disrupted oocyte metabolism. However, the effect and mechanism underlying lipid catabolism in oocyte development remain elusive currently. In the present study, we observed enhanced developmental capacity in Procyanidin B2 (PCB2) treated oocytes during in vitro maturation. Meanwhile, reduced oxidative stress and declined apoptosis were found in oocytes after PCB2 treatment. Further studies confirmed that oocytes treated with PCB2 preferred to lipids catabolism, leading to a notable decrease in lipid accumulation. Subsequent analyses revealed that mitochondrial uncoupling was involved in lipid catabolism, and suppression of uncoupling protein 1 (UCP1) would abrogate the elevated lipid consumption mediated by PCB2. Notably, we identified peroxisome proliferator-activated receptor gamma (PPARγ) as a potential target of PCB2 by docking analysis. Subsequent mechanistic studies revealed that PCB2 improved oocyte development capacity and attenuated oxidative stress by activating PPARγ mediated mitochondrial uncoupling. Our findings identify that PCB2 intricately improves oocyte development capacity through targeted activation of the PPARγ/UCP1 pathway, fostering uncoupling lipid catabolism while concurrently mitigating oxidative stress.

11.
Clin Respir J ; 18(5): e13755, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757752

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is one of the most invasive malignant tumor of the respiratory system. It is also the common pathological type leading to the death of LUAD. Maintaining the homeostasis of immune cells is an important way for anti-tumor immunotherapy. However, the biological significance of maintaining immune homeostasis and immune therapeutic effect has not been well studied. METHODS: We constructed a diagnostic and prognostic model for LUAD based on B and T cells homeostasis-related genes. Minimum absolute contraction and selection operator (LASSO) analysis and multivariate Cox regression are used to identify the prognostic gene signatures. Based on the overall survival time and survival status of LUAD patients, a 10-gene prognostic model composed of ABL1, BAK1, IKBKB, PPP2R3C, CCNB2, CORO1A, FADD, P2RX7, TNFSF14, and ZC3H8 was subsequently identified as prognostic markers from The Cancer Genome Atlas (TCGA)-LUAD to develop a prognostic signature. This study constructed a gene prognosis model based on gene expression profiles and corresponding survival information through survival analysis, as well as 1-year, 3-year, and 5-year ROC curve analysis. Enrichment analysis attempted to reveal the potential mechanism of action and molecular pathway of prognostic genes. The CIBERSORT algorithm calculated the infiltration degree of 22 immune cells in each sample and compared the difference of immune cell infiltration between high-risk group and low-risk group. At the cellular level, PCR and CKK8 experiments were used to verify the differences in the expression of the constructed 10-gene model and its effects on cell viability, respectively. The experimental results supported the significant biological significance and potential application value of the molecular model in the prognosis of lung cancer. Enrichment analyses showed that these genes were mainly related to lymphocyte homeostasis. CONCLUSION: We identified a novel immune cell homeostasis prognostic signature. Targeting these immune cell homeostasis prognostic genes may be an alternative for LUAD treatment. The reliability of the prediction model was confirmed at bioinformatics level, cellular level, and gene level.


Asunto(s)
Adenocarcinoma del Pulmón , Homeostasis , Neoplasias Pulmonares , Humanos , Pronóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/mortalidad , Homeostasis/inmunología , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Análisis de Supervivencia
12.
Heliyon ; 10(7): e28162, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596032

RESUMEN

Brain metastasis (BMs) in small cell lung cancer (SCLC) has a very poor prognosis. This study combined WGCNA with the mfuzz algorithm to identify potential biomarkers in the peripheral blood of patients with BMs. By comparing the significantly differentially expressed genes present in BMs samples, we identified ADCY4 as a target for further study. Expression of ADCY4 was used to cluster mfuzz expression pattern, and 28 hub genes for functional enrichment. PPI network analysis were obtained by comparing with differentially expressed genes in BMs. GABRE, NFE4 and LMOD2 are highly expressed in patients with BMs and have a good diagnostic effect. Immunoinfiltration analysis showed that SCLC patients with BMs may be associated with memory B cells, Tregs, NK cell activation, macrophage M0 and dendritic cell activation. prophytic was used to investigate the ADCY4-mediated anti-tumor drug response. In conclusion, ADCY4 can be used as a promising candidate biomarker for predicting BMs, molecular and immune features in SCLC. PCR showed that ADCY4 expression was increased in NCI-H209 and NCI-H526 SCLC cell lines. In vitro experiments confirmed that the expression of ADCY4 was significantly decreased after anti-PD1 antibody treatment, while the expression of energy metabolism factors were significantly different. This study reveals a potential mechanism by which ADCY4 mediates poor prognosis through energy metabolism -related pathways in SCLC.

13.
Materials (Basel) ; 17(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473447

RESUMEN

This study utilized X-ray computed tomography (CT) technology to analyze the meso-structure of concrete at different replacement rates, using a coal gangue coarse aggregate, after experiencing various freeze-thaw cycles (F-Ts). A predictive model for the degradation of the elastic modulus of Coal Gangue coarse aggregate Concrete (CGC), based on mesoscopic damage, was established to provide an interpretation of the macroscopic mechanical behavior of CGC after F-Ts damage at a mesoscopic scale. It was found that after F-Ts, the compressive strength of concrete, with coal gangue replacement rates of 30%, 60%, and 100%, respectively, decreased by 33.76%, 34.89%, and 42.05% compared with unfrozen specimens. The results indicate that an increase in the coal gangue replacement rate exacerbates the degradation of concrete performance during the F-Ts process. Furthermore, the established predictive formula for elastic modulus degradation closely matches the experimental data, offering a reliable theoretical basis for the durability design of CGC in F-Ts environments.

14.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352582

RESUMEN

While multiplexed fluorescence imaging is frequently used for in vitro microscopy, extending the technique to whole animal imaging in vivo has remained challenging due to the attenuation and scattering of visible and traditional near infrared (NIR-I) wavelengths. Fluorescence imaging using short-wave infrared (SWIR, 1000 - 1700 nm, a.k.a. NIR-II) light enables deeper tissue penetration for preclinical imaging compared to previous methods due to reduced tissue scattering and minimal background autofluorescence in this optical window. Combining NIR-I excitation wavelengths with multiple distinct SWIR emission peaks presents a tremendous opportunity to distinguish multiple fluorophores with high precision for non-invasive, multiplexed anatomical imaging in small animal models. SWIR-emitting semiconductor quantum dots (QDs) with tunable emission peaks and optical stability have emerged as powerful contrast agents, but SWIR imaging demonstrations have yet to move beyond two-color imaging schemes. In this study, we engineered a set of three high quantum yield lead sulfide/cadmium sulfide (PbS/CdS) core/shell QDs with distinct SWIR emissions ranging from 1100 - 1550 nm and utilize these for simultaneous three-color imaging in mice. We first use QDs to non-invasively track lymphatic drainage, highlighting the detailed network of lymphatic vessels with high-resolution with a widefield imaging over a 2 hr period. We then perform multiplexed imaging with all three QDs to distinctly visualize the lymphatic system and spatially overlapping vasculature network. This work establishes optimized SWIR QDs for next-generation multiplexed preclinical imaging, moving beyond the capability of previous dual-labeling techniques. The capacity to discriminate several fluorescent labels through non-invasive NIR-I excitation and SWIR detection unlocks numerous opportunities for studies of disease progression, drug biodistribution, and cell trafficking dynamics in living organisms.

15.
Materials (Basel) ; 17(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38399198

RESUMEN

This paper is grounded on the following information: (1) Disposable masks primarily consist of polypropylene fiber, which exhibits excellent flexibility. (2) China has extensive coal gangue deposits that pose a significant environmental hazard. (3) Coal gangue concrete exhibits greater fragility compared to regular concrete and demonstrates reduced resistance to deformation. With the consideration of environmental conservation and resource reutilization, a preliminary concept suggests the conversion of discarded masks into fibers, which can be blended with coal gangue concrete to enhance its mechanical characteristics. In this paper, the stress-strain law of different mask fiber-doped coal gangue concrete (DMGC) under uniaxial compression is studied when the matrix strength is C20 and C30, and the effect of mask fiber content on the mechanical behavior and energy conversion relationship of coal gangue concrete is analyzed. The experimental results show that when the content of mask fiber is less than 1.5%, the strength, elastic modulus, deformation resistance, and energy dissipation of the concrete increase with mask fiber content. When the amount of mask fiber is more than 1.5%, because the tensile capacity and energy dissipation level of concrete produced by the mask fiber cannot compensate for the compression and deformation resistance of concrete of the same quantity and because excess fiber is difficult to evenly mix in the concrete, there are pore defects in concrete, which decreases the concrete strength due to the increase in mask fiber. Therefore, adding less than 1.5% mask fiber helps to improve the ductility, toughness, impermeability, and oxidation and control the cracking of coal gangue concrete. Based on Weibull theory, a constitutive model of DMGC is established, which fits well with the results of a uniaxial test, providing support for understanding the mechanical law of mask fiber-doped concrete.

16.
Viruses ; 16(1)2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257806

RESUMEN

The quality of cellular products used in biological research can directly impact the ability to obtain accurate results. Epstein-Barr virus (EBV) is a latent virus that spreads extensively worldwide, and cell lines used in experiments may carry EBV and pose an infection risk. The presence of EBV in a single cell line can contaminate other cell lines used in the same laboratory, affecting experimental results. We developed three EBV detection systems: (1) a polymerase chain reaction (PCR)-based detection system, (2) a recombinase polymerase amplification (RPA)-based detection system, and (3) a combined RPA-lateral flow assay (LFA) detection system. The minimum EBV detection limits were 1 × 103 copy numbers for the RPA-based and RPA-LFA systems and 1 × 104 copy numbers for the PCR-based system. Both the PCR and RPA detection systems were applied to 192 cell lines, and the results were consistent with those obtained by the EBV assay methods specified in the pharmaceutical industry standards of the People's Republic of China. A total of 10 EBV-positive cell lines were identified. The combined RPA-LFA system is simple to operate, allowing for rapid result visualization. This system can be implemented in laboratories and cell banks as part of a daily quality control strategy to ensure cell quality and experimental safety and may represent a potential new technique for the rapid detection of EBV in clinical samples.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Recombinasas , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/diagnóstico , Nucleotidiltransferasas , Línea Celular
17.
Arch Toxicol ; 98(3): 865-881, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212449

RESUMEN

Human epidermal growth factor receptor 2-positive (HER2+) breast cancer is correlated with poor prognosis, the current treatment of which is still based on surgery and adjuvant targeted therapy with monoclonal antibody. Problems of drug resistance hinder the use of monoclonal antibodies. Subsequently, tyrosine kinase inhibitors (TKIs) have been noticed, TKIs have the advantages of multi-targets and reduced drug resistance. However, TKIs that target HER family proteins often cause adverse effects such as liver damage and diarrhea. Thus, TKIs with high selectivity are being developed. TH-4000, a prodrug that generated an active form TH-4000Effector (TH-4000E) under hypoxic condition, was evaluated in this research. We found that TH-4000E ([(E)-4-[[4-(3-bromo-4-chloroanilino)pyrido[3,4-d]pyrimidin-6-yl]amino]-4-oxobut-2-enyl]-dimethyl-[(3-methyl-5-nitroimidazol-4-yl)methyl]azanium) (1-1000 nM) had potent and highly selective toxic effects on HER2+ breast cancer cells and inhibited the phosphorylation of HER family kinases at lower doses than that of Lapatinib and Tucatinib. TH-4000E activated Caspase-3 and induced apoptosis through a reactive oxygen species (ROS)-dependent pathway. The prodrug TH-4000 ([(E)-4-[[4-(3-bromo-4-chloroanilino)pyrido[3,4-d]pyrimidin-6-yl]amino]-4-oxobut-2-enyl]-dimethyl-[(3-methyl-5-nitroimidazol-4-yl)methyl]azanium;bromide) (50 mg/kg) effectively suppressed the tumor growth with less liver damage in mouse tumor models. This hypoxia-targeted strategy has possessed advantage in avoiding drug-induced liver damage, TH-4000 could be a promising drug candidate for the treatment of HER2+ breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias , Profármacos , Humanos , Animales , Ratones , Femenino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Receptor ErbB-2/metabolismo , Receptor ErbB-2/uso terapéutico , Lapatinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral
18.
J Allergy Clin Immunol ; 153(1): 122-131, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37742934

RESUMEN

BACKGROUND: Little is known about nasal epithelial gene expression and total IgE in youth. OBJECTIVE: We aimed to identify genes whose nasal epithelial expression differs by total IgE in youth, and group them into modules that could be mapped to airway epithelial cell types. METHODS: We conducted a transcriptome-wide association study of total IgE in 469 Puerto Ricans aged 9 to 20 years who participated in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study, separately in all subjects and in those with asthma. We then attempted to replicate top findings for each analysis using data from 3 cohorts. Genes with a Benjamini-Hochberg-adjusted P value of less than .05 in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study and a P value of less than .05 in the same direction of association in 1 or more replication cohort were considered differentially expressed genes (DEGs). DEGs for total IgE in subjects with asthma were further dissected into gene modules using coexpression analysis, and such modules were mapped to specific cell types in airway epithelia using public single-cell RNA-sequencing data. RESULTS: A higher number of DEGs for total IgE were identified in subjects with asthma (n = 1179 DEGs) than in all subjects (n = 631 DEGs). In subjects with asthma, DEGs were mapped to 11 gene modules. The top module for positive correlation with total IgE was mapped to myoepithelial and mucus secretory cells in lower airway epithelia and was regulated by IL-4, IL5, IL-13, and IL-33. Within this module, hub genes included CDH26, FETUB, NTRK2, CCBL1, CST1, and CST2. Furthermore, an enrichment analysis showed overrepresentation of genes in signaling pathways for synaptogenesis, IL-13, and ferroptosis, supporting interactions between interleukin- and acetylcholine-induced responses. CONCLUSIONS: Our findings for nasal epithelial gene expression support neuroimmune coregulation of total IgE in youth with asthma.


Asunto(s)
Asma , Interleucina-13 , Niño , Humanos , Adolescente , Interleucina-13/genética , Nariz , Transcriptoma , Inmunoglobulina E
19.
Aesthetic Plast Surg ; 48(6): 1084-1093, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37932507

RESUMEN

BACKGROUND: Correction of the crooked nose, especially the perpendicular plate of the ethmoid bone, has the potential to cause skull base injury. At present, the safe and effective method for perpendicular plate resection has not been clearly defined through biomechanics. METHOD: CT scan data of 48 patients with crooked nose and deviated nasal septum were divided into C-type, angular deformity-type, and S-type based on the morphology of the 3D model. Different types of finite element models of the nasal bony septum and skull base were established. The osteotomy depth, angle, and force mode of the PPE resection were simulated by assembling different working conditions for the models. The von Mises stress of the anterior cranial fossa was observed. RESULTS: When the osteotomy line length was 0.5 cm, the angle was at 30° to the Frankfurt plane, and 50 N·mm torque was applied, the von Mises stress of the skull base was minimal in the four models, showing 0.049 MPa (C-type), 0.082 MPa (S-type), 0.128 MPa (angular deformity-type), and 0.021 MPa (control model). The maximum von Mises stress values were found at the skull base when the osteotomy line was 1.5 cm, the angle was 50°, and the force was 10 N along the X-axis, showing 0.349 MPa (C-type), 0.698 MPa (S-type), 0.451 MPa (angular deformity-type), and 0.149 MPa (control model). CONCLUSION: The use of smaller resection angle with the Frankfurt plane, conservative resection depth, and torsion force can better reduce the stress value at the skull base and reduce the risk of basicranial fracture. It is a safe and effective technique for perpendicular plate resection of the ethmoid bone in the correction of crooked nose. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Nariz , Rinoplastia , Humanos , Nariz/cirugía , Rinoplastia/métodos , Análisis de Elementos Finitos , Hueso Etmoides/diagnóstico por imagen , Hueso Etmoides/cirugía , Tabique Nasal/diagnóstico por imagen , Tabique Nasal/cirugía , Tomografía Computarizada por Rayos X
20.
J Am Chem Soc ; 145(50): 27838-27849, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38059465

RESUMEN

Hydrogen sulfide (H2S) has shown promise for gas therapy. However, it is still controversial whether H2S can remodel the tumor microenvironment (TME) and induce robust antitumor immunity. Here, a tumor-targeting and TME-responsive "smart" lipid nanoparticle (1-JK-PS-FA) is presented, which is capable of delivering and releasing H2S specifically in tumor tissues for on-demand H2S gas and photodynamic immunotherapy. 1-JK-PS-FA enables a burst release of H2S in the acidic TME, which promptly reduces the embedded organic electrochromic materials and consequently switches on near-infrared fluorescence and photodynamic activity. Furthermore, we found that high levels of H2S can reprogram the TME by reducing tumor interstitial fluid pressure, promoting angiogenesis, increasing vascular permeability, ameliorating hypoxia, and reducing immunosuppressive conditions. This leads to increased tumor uptake of 1-JK-PS-FA, thereby enhancing PDT efficacy and eliciting strong immunogenic cell death during 808 nm laser irradiation. Therefore, 1-JK-PS-FA permits synergistic H2S gas and photodynamic immunotherapy, effectively eradicating orthotopic breast tumors and preventing tumor metastasis and recurrence. This work showcases the capacity of H2S to reprogram the TME to enhance H2S gas and immunotherapy.


Asunto(s)
Neoplasias Mamarias Animales , Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Microambiente Tumoral , Inmunoterapia , Transporte Biológico , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...