Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
J Environ Manage ; 366: 121700, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996599

RESUMEN

Co-digestion has been considered a promising method to improve methane yield. The effect of the proportion of dominant substrate on the performance and microbial community of anaerobic digestion of Pennisetum hybrid (PH) and livestock waste (LW) was investigated. An obvious synergistic effect was obtained with an increase of 15.20%-17.45% in specific methane yield compared to the predicted value. Meanwhile, the dominant substrate influenced the relational model between methane yield enhancement rate and mixture ratio. For the LW-dominant systems, a parabolic model between enhancement rate and mixture ratio was observed with a highest value of 392.16 mL/g VS achieved at a PH:LW ratio of 2:8. While a linear pattern appeared for PH-dominant systems with the highest methane yield of 307.59 mL/g VS. Co-digestion selectively enriched the relative abundance of Clostridium_sensu_stricto_1, Terrisporobacter, Syntrophomonas, Methanosarcina and Methanobacterium, which boosted the performance of hydrolysis, acidogenesis, acetogenesis and methanogenesis processes.

2.
Cognition ; 251: 105895, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033738

RESUMEN

Decision-making involves weighing up the outcome likelihood, potential rewards, and effort needed. Previous research has focused on the trade-offs between risk and reward or between effort and reward. Here we bridge this gap and examine how risk in effort levels influences choice. We focus on how two key properties of choice influence risk preferences for effort: changes in magnitude and probability. Two experiments assessed people's risk attitudes for effort, and an additional experiment provided a control condition using monetary gambles. The extent to which people valued effort was related to their pattern of risk preferences. Unlike with monetary outcomes, however, there was substantial heterogeneity in effort-based risk preferences: People who responded to effort as costly exhibited a "flipped" interaction pattern of risk preferences. The direction of the pattern depended on whether people treated effort as a loss of resources. Most, but not all, people treat effort as a loss and are more willing to take risks to avoid potentially high levels of effort.

3.
Int J Biol Markers ; : 3936155241261719, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38859794

RESUMEN

BACKGROUND: Non-muscle invasive bladder cancer (NMIBC) is the most prevalent type of bladder cancer, typically associated with a favorable prognosis and a risk of recurrence during the follow-up period. Inflammatory markers have been used to predict prognosis in various cancer types. The aim of this study was to explore the prognostic value of the readily accessible inflammatory markers, platelet-to-lymphocyte ratio (PLR) and interleukin-6 (IL-6), in NMIBC. METHODS: The study comprised a retrospective analysis of clinical data collected from NMIBC patients diagnosed between October 2018 and October 2020. PLR was calculated using the routine preoperative blood test results, and preoperative IL-6 levels were recorded. Receiver operating characteristic (ROC) curves were generated for PLR and IL-6 level and the optimal cut-off values were determined using Youden's index. Survival curves were generated to evaluate the association between PLR and IL-6, and recurrence-free survival (RFS), and univariate and multivariate analysis were performed using the Cox proportional hazards regression model. A nomogram and calibration curve were generated to assess the clinical significance of the model. RESULTS: The ROC curves demonstrated that PLR and IL-6 levels were significantly associated with tumor pathology grade, with area under the curve (AUC) values of 0.833 (95% CI 0.757, 0.910) for PLR and 0.724 (95% CI 0.622, 0.825) for IL-6 levels. PLR and IL-6 levels were also positively associated with tumor recurrence, with AUC values of 0.647 (95% CI 0.538, 0.756) and 0.846 (95% CI 0.769, 0.924), respectively. The survival curves indicated that patients with high PLR and high IL-6 levels had shorter RFS than those with low PLR and low IL-6 level (P < 0.01). Univariate Cox proportional hazards regression analysis showed that age, tumor size, tumor number, pathological grade, PLR and IL-6 were potential risk factors for NMIBC recurrence. Multivariate analysis further revealed that tumor number, smoking, PLR, and IL-6 were independent risk factors for NMIBC recurrence (P < 0.05). CONCLUSIONS: Preoperative peripheral blood inflammatory markers (PLR and IL-6) are useful predictors of RFS in NMIBC patients at the time of initial diagnosis. High PLR and high IL-6 were identified as independent risk factors for tumor recurrence and could serve as potential biological markers for prediction of NMIBC recurrence.

4.
ChemSusChem ; : e202400971, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877868

RESUMEN

Mitigating the growth of dendritic lithium (Li) metal on silicon (Si) anodes has become a crucial task for the pursuit of long-term cycling stability of high energy density Si-based lithium-ion batteries (LIBs) under fast charging or other specific conditions. While it is widely known that Li metal plating on Si-based anodes may introduce inferior cycling stability and cause safety concerns, the evolution of the anode/material structure and electrochemical performance with Li metal plating remains largely unexplored. A comprehensive quantitative investigation of the hybrid Li storage mechanism, combining the Li alloying/dealloying mechanism and plating/stripping mechanism, has been conducted to explore the effect of Li plating on Si-based anodes. The findings reveal that Li plating/stripping accounts for the decay of the overall Coulombic efficiency and cycling stability of the hybrid Li storage mechanism. Furthermore, alloying reactions occurring below 0 V encourage the formation of crystalline Li15Si4, which subsequently exacerbates voltage hysteresis. The performance decay is amplified as the ratio of Li plating/stripping capacity increases, or in other words, as the over-lithiation level rises, thereby posing a threat to the battery's cycling stability. These results provide valuable insights into the design of advanced Si-based electrodes for high energy density LIBs.

5.
Int J Biol Macromol ; 274(Pt 1): 132881, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838900

RESUMEN

As one of the most widespread musculoskeletal diseases worldwide, intervertebral disc degeneration (IVDD) remains an intractable clinical problem. Currently, oxidative stress has been widely considered as a significant risk factor in the IVDD pathological changes, and targeting oxidative stress injury to improve the harsh microenvironment may provide a novel and promising strategy for disc repair. It is evident that spermidine (SPD) has the ability to attenuate oxidative stress across several disease models. However, limited research exists regarding its impact on oxidative stress within the intervertebral disc. Moreover, enhancing the local utilization rate of SPD holds great significance in IVDD management. This study aimed to develop an intelligent biodegradable mesoporous polydopamine (PDA) nanoplatform for sustained release of SPD. The obtained PDA nanoparticles with spherical morphology and mesoporous structure released loaded-therapeutic molecules under low pH and H2O2. Combined treatment with SPD loaded into PDA nanoparticles (SPD/PDA) resulted in better therapeutic potential than those with SPD alone on oxidative stress injury. Furthermore, both SPD and SPD/PDA could induce anti-inflammatory M2 macrophage polarization. Upon injection into degenerative IVDs, the SPD/PDA group achieved a good repair efficacy with a long-term therapeutic effect. These findings indicated that the synergized use of SPD with responsive drug delivery nanocarriers may steadily scavenge reactive oxygen species and provide an effective approach toward the treatment of IVDD.

6.
ACS Appl Mater Interfaces ; 16(20): 26234-26244, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38711193

RESUMEN

The huge volume expansion/contraction of silicon (Si) during the lithium (Li) insertion/extraction process, which can lead to cracking and pulverization, poses a substantial impediment to its practical implementation in lithium-ion batteries (LIBs). The development of low-strain Si-based composite materials is imperative to address the challenges associated with Si anodes. In this study, we have engineered a TiSi2 interface on the surface of Si particles via a high-temperature calcination process, followed by the introduction of an outermost carbon (C) shell, leading to the construction of a low-strain and highly stable Si@TiSi2@NC composite. The robust TiSi2 interface not only enhances electrical and ionic transport but also, more critically, significantly mitigates particle cracking by restraining the stress/strain induced by volumetric variations, thus alleviating pulverization during the lithiation/delithiation process. As a result, the as-fabricated Si@TiSi2@NC electrode exhibits a high initial reversible capacity (2172.7 mAh g-1 at 0.2 A g-1), superior rate performance (1198.4 mAh g-1 at 2.0 A g-1), and excellent long-term cycling stability (847.0 mAh g-1 after 1000 cycles at 2.0 A g-1). Upon pairing with LiNi0.6Co0.2Mn0.2O2 (NCM622), the assembled Si@TiSi2@NC||NCM622 pouch-type full cell exhibits exceptional cycling stability, retaining 90.1% of its capacity after 160 cycles at 0.5 C.

7.
Foods ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672924

RESUMEN

Lushan Yunwu tea (LSYWT) is a famous green tea in China. However, the effects of intercropping tea with flowering cherry on the overall aroma of tea have not been well understood. In this study, headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used for analysis. A total of 54 volatile compounds from eight chemical classes were identified in tea samples from both the intercropping and pure-tea-plantation groups. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and odor activity value (OAV) methods combined with sensory evaluation identified cis-jasmone, nonanal, and linalool as the key aroma compounds in the intercropping group. Benzaldehyde, α-farnesene, and methyl benzene were identified as the main volatile compounds in the flowering cherry using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). These findings will enrich the research on tea aroma chemistry and offer new insights into the product development and quality improvement of LSYWT.

8.
J Environ Manage ; 354: 120327, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38359627

RESUMEN

Sweet sorghum, as a seasonal energy crop, is rich in cellulose and hemicellulose that can be converted into biofuels. This work aims at investigating the effects of synergistic regulation of Pichia anomala and cellulase on ensiling quality and microbial community of sweet sorghum silages as a storage and pretreatment method. Furthermore, the combined pretreatment effects of ensiling and ball milling on sweet sorghum were evaluated by microstructure change and enzymatic hydrolysis. Based on membership function analysis, the combination of P. anomala and cellulase (PA + CE) significantly improved the silage quality by preserving organic components and promoting fermentation characteristics. The bioaugmented ensiling with PA + CE restructured the bacterial community by facilitating Lactobacillus and inhibiting undesired microorganisms by killer activity of P. anomala. The combined bioaugmented ensiling pretreatment with ball milling significantly increased the enzymatic hydrolysis efficiency (EHE) to 71%, accompanied by the increased specific surface area and decreased pore size/crystallinity of sweet sorghum. Moreover, the EHE after combined pretreatment was increased by 1.37 times compared with raw material. Hence, the combined pretreatment was demonstrated as a novel strategy to effectively enhance enzymatic hydrolysis of sweet sorghum.


Asunto(s)
Celulasa , Saccharomycetales , Sorghum , Hidrólisis , Sorghum/química , Sorghum/metabolismo , Ensilaje/análisis , Ensilaje/microbiología , Celulasa/metabolismo , Fermentación
9.
Biomed Mater ; 19(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38422521

RESUMEN

Calcium carbonate (CaCO3), which exhibits excellent biocompatibility and bioactivity, is a well-established bone filling material for bone defects. Here, we synthesized CaCO3microspheres (CMs) to use as an intelligent carrier to load bone morphogenetic protein-2 (BMP-2). Subsequently, drug-loaded CMs and catalase (CAT) were added to methacrylated gelatin (GelMA) hydrogels to prepare a composite hydrogel for differential release of the drugs. CAT inside hydrogels was released with a fast rate to eliminate H2O2and generate oxygen. Constant BMP-2 release from CMs induced rapid osteogenesis. Resultsin vitroindicated that the composite hydrogels efficiently reduced the level of intracellular reactive oxygen species, preventing cells from being injured by oxidative stress, promoting cell survival and proliferation, and enhancing osteogenesis. Furthermore, animal experiments demonstrated that the composite hydrogels were able to inhibit the inflammatory response, regulate macrophage polarization, and facilitate the healing of bone defects. These findings indicate that a multi-pronged strategy is greatly expected to promote the bone healing by modulating pathological microenvironments.


Asunto(s)
Hidrogeles , Osteogénesis , Animales , Hidrogeles/farmacología , Huesos , Gelatina , Carbonato de Calcio , Regeneración Ósea
10.
J Orthop Surg Res ; 19(1): 41, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184651

RESUMEN

OBJECTIVE: This study aims to identify potential independent risk factors for residual low back pain (LBP) in patients with thoracolumbar osteoporotic vertebral compression fractures (OVCFs) following percutaneous kyphoplasty (PKP) treatment. Additionally, we aim to develop a nomogram that can accurately predict the occurrence of residual LBP. METHODS: We conducted a retrospective review of the medical records of thoracolumbar OVCFs patients who underwent PKP treatment at our hospital between July 2021 and December 2022. Residual LBP was defined as the presence of moderate or greater pain (VAS score ≥ 4) in the low back one day after surgery, and patients were divided into two groups: the LBP group and the non-LBP group. These patients were then randomly allocated to either a training or a validation set in the ratio of 7:3. To identify potential risk factors for residual LBP, we employed lasso regression for multivariate analysis, and from this, we constructed a nomogram. Subsequently, the predictive accuracy and practical clinical application of the nomogram were evaluated through a receiver operating characteristic (ROC) curve, a calibration curve, and a decision curve analysis (DCA). RESULTS: Our predictive model revealed that five variables-posterior fascial oedema, intravertebral vacuum cleft, time from fracture to surgery, sarcopenia, and interspinous ligament degeneration-were correlated with the presence of residual LBP. In the training set, the area under the ROC was 0.844 (95% CI 0.772-0.917), and in the validation set, it was 0.842 (95% CI 0.744-0.940), indicating that the model demonstrated strong discriminative performance. Furthermore, the predictions closely matched actual observations in both the training and validation sets. The decision curve analysis (DCA) curve suggested that the model provides a substantial net clinical benefit. CONCLUSIONS: We have created a novel numerical model capable of accurately predicting the potential risk factors associated with the occurrence of residual LBP following PKP in thoracolumbar OVCFs patients. This model serves as a valuable tool for guiding specific clinical decisions for patients with OVCFs.


Asunto(s)
Fracturas por Compresión , Cifoplastia , Dolor de la Región Lumbar , Fracturas de la Columna Vertebral , Humanos , Fracturas por Compresión/etiología , Fracturas por Compresión/cirugía , Cifoplastia/efectos adversos , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/cirugía , Fracturas de la Columna Vertebral/etiología , Fracturas de la Columna Vertebral/cirugía , Columna Vertebral
11.
Chemistry ; 30(6): e202302857, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37872690

RESUMEN

TiNb2 O7 with Wadsley-Roth phase delivers double theoretical specific capacity and similar working potential in comparison to spinel Li4 Ti5 O12 , the commercial high-rate anode material, and thus can enable much higher energy density of lithium-ion batteries. However, the inter-particle resistance within the high-mass-loading TiNb2 O7 electrode would impede the capacity release for practical application, especially under fast-charging conditions. Herein, 10-20 µm-size carbon-coated TiNb2 O7 secondary particle (SP-TiNb2 O7 ) consisting of initial micro-scale TiNb2 O7 particles (MP-TiNb2 O7 ) was fabricated. The high crystallinity of active material could enable fast-charge diffusion and electrochemical reaction rate within particles, and the small number of stacking layers of SP-TiNb2 O7 could reduce the large inter-particle resistance that regular particle electrode often possess and achieve high compaction density of electrodes with high mass loading. The investigation on materials structure and electrochemical reaction kinetics verified the advances of the as-fabricated SP-TiNb2 O7 in achieving superior electrochemical performance. The SP-TiNb2 O7 exhibited high reversible capacity of 292.7 mAh g-1 in the potential range of 1-3 V (Li+ /Li) at 0.1 C, delivering high-capacity release of 94.3 %, and high capacity retention of 86 % at 0.5 C for 250 cycles in half cell configuration. Particularly, the advances of such an anode were verified in practical 5 Ah-level laminated full pouch cell. The as-assembled LiFePO4 ||TiNb2 O7 full cell exhibited a high capacity of 5.08 Ah at high charging rate of 6 C (77.9 % of that at 0.2 C of 6.52 Ah), as well as an ultralow capacity decay rate of 0.0352 % for 250 cycles at 1 C, suggesting the great potential for practical fast-charging lithium-ion batteries.

12.
Water Res ; 246: 120711, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37844339

RESUMEN

The accumulation of volatile fatty acids (VFAs) in anaerobic digestion (AD) systems resulting from food waste overload poses a risk of system collapse. However, limited understanding exists regarding the inhibitory mechanisms and effective strategies to address VFAs-induced stress. This study found that accumulated VFAs exert reactive oxygen species (ROS) stress on indigenous microbiota, particularly impacting methanogens due to their lower antioxidant capability compared to bacteria, which is supposed to be the primary reason for methanogenesis failure. To enhance the VFAs-stressed AD process, microbiome re-assembly using customized propionate-degrading consortia and bioaugmentation with concentrated digestate were implemented. Microbiome re-assembly demonstrated superior efficiency, yielding an average methane yield of 563.6±159.8 mL/L·d and reducing VFAs to undetectable levels for a minimum of 80 days. This strategy improved the abundance of Syntrophomonas, Syntrophobacter and Methanothrix, alleviating ROS stress. Conversely, microbial community in reactor with other strategy experienced an escalating intracellular damage, as indicated by the increase of ROS generation-related genes. This study fills knowledge gaps in stress-related metabolic mechanisms of anaerobic microbiomes exposed to VFAs and microbiome re-assembly to boost methanogenesis process.


Asunto(s)
Microbiota , Eliminación de Residuos , Anaerobiosis , Especies Reactivas de Oxígeno , Alimentos , Reactores Biológicos/microbiología , Ácidos Grasos Volátiles/metabolismo , Metano/metabolismo
13.
Mater Horiz ; 10(11): 5246-5255, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37740481

RESUMEN

Wadsley-Roth phase niobium titanium oxide (TiNb2O7) is widely regarded as a promising anode candidate for fast-charging lithium-ion batteries due to its safe working potential and doubled capacity in comparison to the commercial fast-charging anode material (lithium titanium oxide, Li4Ti5O12). Although good fast charge/discharge performance was shown for nanostructured TiNb2O7, the small size would cause the low electrode compensation density and energy density of batteries, as well as parasitic reactions. Fundamental understanding of the electrochemical lithium insertion/extraction process and the structural evolution for the micrometer-scale single crystalline TiNb2O7 (MSC-TiNb2O7) could provide insights to understand its inherent properties and possibility for fast-charging application. Here, we revealed the highly reversible structural evolution of the MSC-TiNb2O7 during the lithiation/delithiation processes. Interestingly, an ion-conductive lithium niobate interphase was in situ formed on the MSC-TiNb2O7 surface during the formation cycle, which could facilitate fast ion diffusion on the material surface and support fast electrochemical reaction kinetics. Experimentally, the MSC-TiNb2O7 delivered a high reversible capacity of 291.9 mA h g-1 at 0.5C with a high initial Coulombic efficiency (>95%), and showed superb rate capability with a reasonable capacity of 55.6 mA h g-1 under a high current density of 40C. An Ah-level pouch cell with a lithium cobalt oxide (LiCoO2) cathode exhibited 91.5% capacity retention at 3C charging rate, which revealed the significant role of high crystallinity and in situ formation of an ion conductive nano-interphase in realizing fast charging capability of practical TiNb2O7-based lithium-ion batteries.

14.
ACS Nano ; 17(19): 19459-19469, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37768556

RESUMEN

Low-temperature lithium metal batteries are of vital importance for cold-climate condition applications. Their realization, however, is plagued by the extremely sluggish Li+ transport kinetics in the vicinity of Li metal anode at low temperatures. Different from the widely adopted electrolyte engineering, a functional interphase design concept is proposed in this work to efficiently improve the low-temperature electrochemical reaction kinetics of Li metal anodes. As a proof of concept, we design a hybrid polymer-alloy-fluoride (PAF) interphase featuring numerous gradient fluorinated solid-solution alloy composite nanoparticles embedded in a polymerized dioxolane matrix. Systematic experimental and theoretical investigations demonstrate that the hybrid PAF interphase not only exhibits superior lithiophilicity but also provides abundant ionic conductive pathways for homogeneous and fast Li+ transport at the Li-electrolyte interface. With enhanced interfacial dynamics of Li-ion migration, the as-designed PAF-Li anode works stably for 720 h with low voltage hysteresis and dendrite-free electrode morphology in symmetric cell configurations at -40 °C. The full cells with PAF-Li anode display a commercial-grade capacity of 4.26 mAh cm-2 and high capacity retention of 74.7% after 150 cycles at -20 °C. The rational functional interphase design for accelerating ion-transfer kinetics sheds innovative insights for developing high-areal-capacity and long-lifespan lithium metal batteries at low temperatures.

15.
Nat Commun ; 14(1): 4648, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532688

RESUMEN

Development of effective recycling strategies for cathode materials in spent lithium-ion batteries are highly desirable but remain significant challenges, among which facile separation of Al foil and active material layer of cathode makes up the first important step. Here, we propose a reaction-passivation driven mechanism for facile separation of Al foil and active material layer. Experimentally, >99.9% separation efficiency for Al foil and LiNi0.55Co0.15Mn0.3O2 layer is realized for a 102 Ah spent cell within 5 mins, and ultrathin, dense aluminum-phytic acid complex layer is in-situ formed on Al foil immediately after its contact with phytic acid, which suppresses continuous Al corrosion. Besides, the dissolution of transitional metal from LiNi0.55Co0.15Mn0.3O2 is negligible and good structural integrity of LiNi0.55Co0.15Mn0.3O2 is well-maintained during the processing. This work demonstrates a feasible approach for Al foil-active material layer separation of cathode and can promote the green and energy-saving battery recycling towards practical applications.

16.
Bioresour Technol ; 387: 129678, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37579859

RESUMEN

In this study, repeated-batch fermentation was used to convert fruit and vegetable waste to lactate and volatile fatty acids (VFAs), which are essential carbon sources for medium-chain fatty acids (MCFAs) production. The effect of cycle time and replacement ratio on acidification in long-term fermentation was investigated. The results showed that they had a significant impact on product yield, productivity, and type of products. Considering the yield, productivity, and lactate/VFAs ratio, a replacement ratio of 30% and a cycle time of 2 d may be more suitable for further production of MCFAs. Its productivity and lactate/VFAs ratio were 4.07 ± 0.24 g/(L·d) and 5 ± 0.6, respectively. The lactic acid bacteria, such as Enterococcus (63%) and Lactobacillus (33%), stabilized in the reactor, resulting in the generation of both lactate and VFAs by heterolactic fermentation. The present study demonstrated a new strategy with the potential to recover high-value products from organic waste streams.


Asunto(s)
Ácido Láctico , Verduras , Fermentación , Frutas , Ácidos Grasos Volátiles , Ácidos Grasos , Aguas del Alcantarillado , Concentración de Iones de Hidrógeno , Reactores Biológicos
17.
Nano Lett ; 23(16): 7485-7492, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37477256

RESUMEN

The recycling of LiFePO4 from degraded lithium-ion batteries (LIBs) from electric vehicles (EVs) has gained significant attention due to resource, environment, and cost considerations. Through neutron diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy, we revealed continuous lithium loss during battery cycling, resulting in a Li-deficient state (Li1-xFePO4) and phase separation within individual particles, where olive-shaped FePO4 nanodomains (5-10 nm) were embedded in the LiFePO4 matrix. The preservation of the olive-shaped skeleton during Li loss and phase change enabled materials recovery. By chemical compensation for the lithium loss, we successfully restored the hybrid LiFePO4/FePO4 structure to pure LiFePO4, eliminating nanograin boundaries. The regenerated LiFePO4 (R-LiFePO4) exhibited a high crystallinity similar to the fresh counterpart. This study highlights the importance of topotactic chemical reactions in structural repair and offers insights into the potential of targeted Li compensation for energy-efficient recycling of battery electrode materials with polyanion-type skeletons.

18.
Small ; 19(48): e2303864, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37525330

RESUMEN

Silicon (Si) is regarded as one of the most promising anode materials for high-performance lithium-ion batteries (LIBs). However, how to mitigate its poor intrinsic conductivity and the lithiation/delithiation-induced large volume change and thus structural degradation of Si electrodes without compromising their energy density is critical for the practical application of Si in LIBs. Herein, an integration strategy is proposed for preparing a compact micron-sized Si@G/CNF@NC composite with a tight binding and dual-encapsulated architecture that can endow it with superior electrical conductivity and deformation resistance, contributing to excellent cycling stability and good rate performance in thick electrode. At an ultrahigh mass loading of 10.8 mg cm-2 , the Si@G/CNF@NC electrode also presents a large initial areal capacity of 16.7 mA h cm-2 (volumetric capacity of 2197.7 mA h cm-3 ). When paired with LiNi0.95 Co0.02 Mn0.03 O2 , the pouch-type full battery displays a highly competitive gravimetric (volumetric) energy density of ≈459.1 Wh kg-1 (≈1235.4 Wh L-1 ).

19.
RSC Adv ; 13(21): 14060-14064, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179997

RESUMEN

Carbon anions formed via the addition of Grignard reagents to SP-vinyl phosphinates were modified with electrophilic reagents to afford organophosphorus compounds with diverse carbon skeletons. The electrophiles included acids, aldehydes, epoxy groups, chalcogens and alkyl halides. When alkyl halides were used, bis-alkylated products were afforded. Substitution reactions or polymerization occurred when the reaction was applied to vinyl phosphine oxides.

20.
Nano Lett ; 23(8): 3369-3376, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37052625

RESUMEN

Lithium (Li) metal has attracted great attention as a promising high-capacity anode material for next-generation high-energy-density rechargeable batteries. Nonuniform Li+ transport and uneven Li plating/stripping behavior are two key factors that deteriorate the electrochemical performance. In this work, we propose an interphase acid-base interaction effect that could regulate Li plating/stripping behavior and stabilize the Li metal anode. ZSM-5, a class of zeolites with ordered nanochannels and abundant acid sites, was employed as a functional interface layer to facilitate Li+ transport and mitigate the cell concentration polarization. As a demonstration, a pouch cell with a high-areal-capacity LiNi0.95Co0.02Mn0.03O2 cathode (3.7 mAh cm-2) and a ZSM-5 modified thin lithium anode (50 µm) delivered impressive electrochemical performance, showing 92% capacity retention in 100 cycles (375.7 mAh). This work reveals the effect of acid-base interaction on regulating lithium plating/stripping behaviors, which could be extended to developing other high-performance alkali metal anodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...