RESUMEN
Phthalates, classified as environmental endocrine disruptors, pose potential toxicity risks to human health. Metabolic dysfunction-associated fatty liver disease is one of the most widespread liver diseases globally. Compared to studies focusing on metabolic disorders in relation to pollutants exposure, the impact of individual factors such as fatty liver on the in vivo metabolism of pollutants is always overlooked. Therefore, this study measured concentrations and composition of phthalate monoesters (mPAEs) in human urine samples, particularly those from fatty liver patients. Furthermore, we induced fatty liver in male Wistar rats by formulating a high-fat diet for twelve weeks. After administering a single dose of DEHP at 500 mg/kg bw through gavage, we compared the levels of di-2-ethylhexyl phthalate (DEHP), its metabolites (mDEHPs) and three hepatic metabolic enzymes, namely cytochrome P450 enzymes (CYP450), UDP glucuronosyltransferase 1 (UGT1), and carboxylesterase 1 (CarE1), between the normal and fatty liver rat groups. Compared to healthy individuals (n = 75), fatty liver patients (n = 104) exhibited significantly lower urinary concentrations of ∑mPAEs (median: 106 vs. 166 ng/mL), but with a higher proportion of mono-2-ethylhexyl phthalate in ∑mDEHPs (25.7 % vs. 9.9 %) (p < 0.05). In the animal experiment, we found that fatty liver in rats prolonged the elimination half-life of DEHP (24.61 h vs. 18.89 h) and increased the contents of CYP450, CarE1, and UGT1, implying the common but differentiated metabolism of DEHP as excess lipid accumulation in liver cells. This study provides valuable information on how to distinguish populations in biomonitoring studies across a diverse population and in assigning exposure classifications of phthalates or similar chemicals in epidemiologic studies.
Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Enfermedad del Hígado Graso no Alcohólico , Ácidos Ftálicos , Humanos , Masculino , Ratas , Animales , Dietilhexil Ftalato/metabolismo , Exposición a Riesgos Ambientales , Ratas Wistar , Ácidos Ftálicos/orina , Contaminantes Ambientales/metabolismo , BiomarcadoresRESUMEN
Data monitoring is a prerequisite for the occurrence of organophosphate esters (OPEs) in the soil environment in light of their potential toxicity, bioaccumulation, and environmental persistence. In this study, we determined the concentrations and profiles of OPEs in surface soils collected from Jinan City, East China. The soil concentrations of ΣOPE (sum of all OPEs) were in the range of 2.55-581 ng/g dry weight (dw), with an average value of 106 ng/g dw. Industrial soils (mean: 433 ng/g dw) had significantly higher levels of ΣOPE compared with those in urban (42.1 ng/g dw) and farmland soils (7.89 ng/g dw) (p < 0.01), suggesting that industrial activity is an important source of OPEs to ambient soil environment. Tris(1-chloro-2-propyl) phosphate (TCIPP), triphenyl phosphate (TPHP), and tris(2-butoxyethyl) phosphate (TBOEP) were the most abundant OPEs in industrial soils, contributing 30%, 25%, and 20% of ΣOPE, respectively. Principal component analysis revealed that TCIPP, TPHP, and TBOEP in soils derived from respective industrial activities. As compared with other cities within China, the surface soil of Jinan City was mildly contaminated by OPEs, and its human exposure and eco-toxicological risks were found to be negligible. Our study provides current contamination status of OPEs in soils across the multiple functional regions of Jinan, which could be used to support the authorities to make relevant regulations.
Asunto(s)
Retardadores de Llama , Suelo , China , Ciudades , Monitoreo del Ambiente , Ésteres , Retardadores de Llama/análisis , Humanos , Organofosfatos , Proyectos Piloto , Medición de RiesgoRESUMEN
Contamination by hexabromocyclododecanes (HBCDDs) in the soil environment is an ongoing concern because of their "specific exemption" on the production and use in China. In this study, spatial distribution, temporal trend, and diastereoisomer profiles of HBCDDs were examined in surface soils collected in Jinan, China. Concentrations of ΣHBCDD (sum of α-, ß-, and γ-HBCDDs) in soils ranged from 1.70 to 228 ng/g dry weight (dw), with a mean value of 26.1 ng/g dw. Soils collected from e-waste dismantling sites (mean 146 ng/g dw) contained significantly higher concentrations of ΣHBCDD than those of urban (15.5 ng/g dw) and farmland soils (3.86 ng/g dw) (p < 0.01). The temporal trend suggested that ΣHBCDD levels in the industrial area rose significantly between 2014 and 2019 (p < 0.05), with an annual increase of 12%. An increase in ΣHBCDD levels was also observed in urban and farmland soil samples during the study period, although it did not reach a significant level (p > 0.05). All surface soils were dominated by γ-HBCDD (mean 60.7% of total concentrations); however, the proportions of α-isomer increased from 28.7% in urban and rural soils to 43.4% in industrial soils. The calculated risk quotients of HBCDDs present in soils were at least 25-fold lower than the threshold limit value. The mean mass inventory of HBCDDs was approximately 2501 kg in the cultivated land of Jinan City; further studies are needed to discern the uptake of HBCDDs by crops and the fate of these chemicals in agricultural ecosystems.
Asunto(s)
Contaminantes del Suelo/análisis , Suelo , China , Ciudades , Ecosistema , Monitoreo del Ambiente , Hidrocarburos BromadosRESUMEN
A method is described for the determination of microRNA. It is based on the use of organic electrochemical transistors (OECTs) fabricated on a flexible poly(ethylene terephthalate) substrate. A gold electrode was modified with gold nanoparticles to immobilize the capture DNA probe and then served as the gate of the device. The detection of microRNA21 was realized by monitoring the change of the drain-source current after hybridization of capture DNA with microRNA21. Under optimal conditions, this biosensor exhibits good sensitivity and specificity. It works in the 5 pM to 20 nM microRNA concentration range and has a 2 pM detection limit. Graphical abstract Schematic of the organic electrochemical transistor-based microRNA21 biosensor. It constitutes a screen-printed carbon source (S) and drain (D) electrodes, a spin-coated poly(3,4-ethylenedioxythiophere):poly(styrene sulfonic acid) (PEDOT:PSS) film on the poly(ethylene terephthalate) (PET) substrate, and a gold gate modified with gold nanoparticles (Au NPs), capture probe, and 6-mercapto-1-hexanol (MCH).
Asunto(s)
Técnicas Biosensibles , Sondas de ADN/química , Técnicas Electroquímicas/métodos , Oro , Nanopartículas del Metal , MicroARNs/análisis , Técnicas Biosensibles/instrumentación , Humanos , Límite de Detección , Nanopartículas del Metal/químicaRESUMEN
The surface functional groups of GO have significant effects on the performances of GO-based gene delivery vector. In this work, the polyamidoamine (PAMAM) dendrimer and glycyrrhetinic acid (GA) were tethered onto the GO surface by one-step covalently cross-linking method. The micro-morphology, surface functional groups, and zeta potential of the obtained GO-PAMAM-GA hybrid were characterized and verified. The effects of GA amount in the hybrid on the dispersive property in cell culture medium, in vitro cytotoxicity to human hepatocarcinoma (SMMC-7721) and human embryonic kidney (HEK-293) cells, and gene (plasmid DNA of enhanced green fluorescent protein) transfection capacity were investigated in detail. Under optimal conditions, the obtained hybrid shows small average size (about 160 nm) and has very good dispersive stability (in 30 days) in cellular culture medium. Compared with the GO-PAMAM without GA modification, the GO-PAMAM-GA hybrid exhibits greatly enhanced biocompatibility to the two cell lines. The cellular viability of SMMC-7721 cells still retains about 98% even the concentration of the hybrid up to 200 µg mL-1. The gene transfection capacity of the GO-PAMAM has been improved about 50% through the GA functionalization. Moreover, the GO-PAMAM-GA hybrid possesses targeting gene transfection to SMMC-7721 cells.