Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cogn Neurodyn ; 18(1): 233-245, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38406206

RESUMEN

The human brain's ultra-low power consumption and highly parallel computational capabilities can be accomplished by memristor-based convolutional neural networks. However, with the rapid development of memristor-based convolutional neural networks in various fields, more complex applications and heavier computations lead to the need for a large number of memristors, which makes power consumption increase significantly and the network model larger. To mitigate this problem, this paper proposes an SBT-memristor-based convolutional neural network architecture and a hybrid optimization method combining pruning and quantization. Firstly, SBT-memristor-based convolutional neural network is constructed by using the good thresholding property of the SBT memristor. The memristive in-memory computing unit, activation unit and max-pooling unit are designed. Then, the hybrid optimization method combining pruning and quantization is used to improve the SBT-memristor-based convolutional neural network architecture. This hybrid method can simplify the memristor-based neural network and represent the weights at the memristive synapses better. Finally, the results show that the SBT-memristor-based convolutional neural network reduces a large number of memristors, decreases the power consumption and compresses the network model at the expense of a little precision loss. The SBT-memristor-based convolutional neural network obtains faster recognition speed and lower power consumption in MNIST recognition. It provides new insights for the complex application of convolutional neural networks.

2.
Environ Pollut ; 335: 122361, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580004

RESUMEN

Silage is produced worldwide for both livestock feeding and biogas production. Sustainable silage production requires characterization and mitigation of potential effects on environmental quality, particularly from greenhouse gas emissions during the production cycle. Ex-situ sampling has demonstrated that major emissions are carbon dioxide (CO2) and ethanol (EtOH). In-situ gas measurements from farm silo and bale silage are rare and may be important to improve our knowledge of the physical and biochemical causes, and constraints on these gas emissions. This study focused on tracking the kinetics of CO2 and EtOH emissions from bale maize silage, with real-time identification, quantification and separation of aerobic and anaerobic respiratory components in the period following opening of the silage. For this, an automatic multi-sensor gas-flux chamber (AMGC) was developed. Three bales (mean weight: 890 kg) of maize silage were tested (n = 3). Oxygen (O2) and temperature (Tsi) sensors were co-located at 10- and 20-cm behind the open face of the bales. Over the two weeks of the experiment we observed: (i) significant initial discharge of CO2 across the open face (1.68-2.55 mol m-2 h-1) and EtOH (0.027-0.034 mol m-2 h-1); (ii) peak CO2 emission occurred when O2 concentration (10 cm depth) was 3∼8% vol., while peak EtOH emission occurred below 2% vol. O2, (iii) dynamic conversion of O2 to CO2 from aerobic respiration; and (iv) the cumulative emission of EtOH during the anaerobic period was 4-6 times greater than that during aerobic plus semi-aerobic periods. These novel measurements provide mechanistic understanding, and may facilitate improved management of silage production to minimize environmental impact and aerobic loss of silage.


Asunto(s)
Dióxido de Carbono , Ensilaje , Ensilaje/análisis , Zea mays , Anaerobiosis , Microbiología del Suelo , Oxígeno , Metano
3.
Sci Rep ; 12(1): 7826, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35552451

RESUMEN

A major reason for treatment failure of cancer is acquisition of drug resistance. The specific mechanisms underlying hepatocellular carcinoma (HCC) chemoresistance need to be fully elucidated. lncRNAs involve in drug resistance in some cancers, however, the exact functions of lncRNA colon cancer-associated transcript 1 (CCAT1) in oxaliplatin resistance in HCC are still unknown. Our study indicated that CCAT1 promoted HCC proliferation and reduced the apoptosis induced by oxaliplatin. Knockout of CCAT1 could increased chemosensitivity in vitro and in vivo. Further study found that QKI-5 was an important mediator and blocking of QKI-5/p38 MAPK signaling pathway could enhance oxaliplatin sensitivity. In conclusions, CCAT1 promoted proliferation and oxaliplatin resistance via QKI-5/p38 MAPK signaling pathway in HCC. Targeting CCAT1 in combination with chemotherapeutics may be a promising alternative to reverse drug resistance in HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Proteínas de Unión al ARN/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Front Microbiol ; 12: 673795, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475854

RESUMEN

The microbiome in silage may vary substantially from the onset to the completion of fermentation. Improved additives and inoculants are being developed to accelerate the ensiling process, to enhance fermentation quality, and to delay spoilage during feed-out. However, current methods for preselecting and characterizing these amendments are time-consuming and costly. Here, we have developed a multi-sensor mini-bioreactor (MSMB) to track microbial fermentation in situ and additionally presented a mathematical model for the optimal assessment among candidate inoculants based on the Bolza equation, a fundamental formula in optimal control theory. Three sensors [pH, CO2, and ethanol (EtOH)] provided data for assessment, with four additional sensors (O2, gas pressure, temperature, and atmospheric pressure) to monitor/control the fermentation environment. This advanced MSMB is demonstrated with an experimental method for evaluating three typical species of lactic acid bacteria (LAB), Lentilactobacillus buchneri (LB) alone, and LB mixed with Lactiplantibacillus plantarum (LBLP) or with Enterococcus faecium (LBEF), all cultured in De Man, Rogosa, and Sharpe (MRS) broth. The fermentation process was monitored in situ over 48 h with these candidate microbial strains using the MSMB. The experimental results combine acidification characteristics with production of CO2 and EtOH, optimal assessment of the microbes, analysis of the metabolic sensitivity to pH, and partitioning of the contribution of each species to fermentation. These new data demonstrate that the MSMB associated with the novel rapid data-processing method may expedite development of microbial amendments for silage additives.

5.
Sci Rep ; 11(1): 8686, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888808

RESUMEN

High quality silage containing abundant lactic acid is a critical component of ruminant diets in many parts of the world. Silage deterioration, a result of aerobic metabolism (including utilization of lactic acid) during storage and feed-out, reduces the nutritional quality of the silage, and its acceptance by animals. In this study, we introduce a novel non-disruptive dual-sensor method that provides near real-time information on silage aerobic stability, and demonstrates for the first time that in situ silage temperature (Tsi) and pH are both associated with preservation of lactic acid. Aerobic deterioration was evaluated using two sources of maize silage, one treated with a biological additive, at incubation temperatures of 23 and 33 °C. Results showed a time delay between the rise of Tsi and that of pH following aerobic exposure at both incubation temperatures. A 11 to 25% loss of lactic acid occurred when Tsi reached 2 °C above ambient. In contrast, by the time the silage pH had exceeded its initial value by 0.5 units, over 60% of the lactic acid had been metabolized. Although pH is often used as a primary indicator of aerobic deterioration of maize silage, it is clear that Tsi was a more sensitive early indicator. However, the extent of the pH increase was an effective indicator of advanced spoilage and loss of lactic acid due to aerobic metabolism for maize silage.

6.
Sci Rep ; 7(1): 14721, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116114

RESUMEN

Silage is a critical global feedstock, but is prone to aerobic deterioration. The dominant mechanism of O2 transport into silage remains unresolved. Here, multiple sensors tracked O2 and CO2, gas pressure (ΔP) between internal silage and ambient air, pH and silage temperature (Tsi) during the ensilage of maize and ryegrass. We report the first observation that CO2 produced from microbial respiration was partially dissolved in silage water, with evidence of negative or positive ΔP depending on the changing balance between CO2 production and dissolution. The ΔP < 0 reflected an apparent respiratory quotient (RQ) < 1. Net CO2 production was much greater in anaerobic fermentation stage than in initial aerobic phase or later aerobic feed-out phase. O2 transport into silage is intimately linked to the dynamics of net CO2, ΔP, microbial activity, pH and Tsi. These results suggested that both gas diffusion (based on Fick's law) and advective transfer (Darcy's law) play equally important roles in governing the complex temporal progression of inward and outward gas fluxes to and from the silage interior. Even though low pH suppressed microbial activity and supported aerobic stability, the negative ΔP increased the risk of O2 entry and aerobic deterioration during feed-out phase.

7.
Sensors (Basel) ; 16(7)2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27399703

RESUMEN

For silage production, high bulk density (BD) is critical to minimize aerobic deterioration facilitated by oxygen intrusion. To precisely assess packing quality for bunker silos, there is a desire to visualize the BD distribution within the silage. In this study, a penetrometer-based mapping system was developed. The data processing included filtering of the penetration friction component (PFC) out of the penetration resistance (PR), transfer of the corrected penetration resistance (PRc) to BD, incorporation of Kriged interpolation for data expansion and map generation. The experiment was conducted in a maize bunker silo (width: 8 m, middle height: 3 m). The BD distributions near the bunker silo face were represented using two map groups, one related to horizontal- and the other to vertical-density distribution patterns. We also presented a comparison between the map-based BD results and core sampling data. Agreement between the two measurement approaches (RMSE = 19.175 kg·m(-3)) demonstrates that the developed penetrometer mapping system may be beneficial for rapid assessment of aerobic deterioration potential in bunker silos.

8.
Sensors (Basel) ; 16(1)2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26784194

RESUMEN

Oxygen (O2) concentration inside the substrate is an important measurement for silage-research and-practical management. In the laboratory gas chromatography is commonly employed for O2 measurement. Among sensor-based techniques, accurate and reliable in situ measurement is rare because of high levels of carbon dioxide (CO2) generated by the introduction of O2 in the silage. The presented study focused on assessing three types of commercial O2 sensors, including Clark oxygen electrodes (COE), galvanic oxygen cell (GOC) sensors and the Dräger chip measurement system (DCMS). Laboratory cross calibration of O2 versus CO2 (each 0-15 vol.%) was made for the COE and the GOC sensors. All calibration results verified that O2 measurements for both sensors were insensitive to CO2. For the O2 in situ measurement in silage, all O2 sensors were first tested in two sealed barrels (diameter 35.7 cm; height: 60 cm) to monitor the O2 depletion with respect to the ensiling process (Test-A). The second test (Test-B) simulated the silage unloading process by recording the O2 penetration dynamics in three additional barrels, two covered by dry ice (0.6 kg or 1.2 kg of each) on the top surface and one without. Based on a general comparison of the experimental data, we conclude that each of these in situ sensor monitoring techniques for O2 concentration in silage exhibit individual advantages and limitations.


Asunto(s)
Agricultura/instrumentación , Dióxido de Carbono/análisis , Electrónica/instrumentación , Oxígeno/análisis , Ensilaje/análisis , Calibración , Electrodos , Diseño de Equipo
9.
Sensors (Basel) ; 16(1)2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26805833

RESUMEN

To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.


Asunto(s)
Agricultura/instrumentación , Agricultura/métodos , Agroquímicos , Ingeniería/instrumentación , Plaguicidas , Diseño de Equipo , Termodinámica , Viscosidad
10.
New Phytol ; 206(1): 471-481, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25408233

RESUMEN

One role of stems is that of water storage. The water content of stems increases and decreases as xylem water potential increases and decreases, respectively. Hence, a nondestructive method to measure stem water content (StWC) = (volume of water) : (volume of stem), could be useful in monitoring the drought stress status of plants. We introduce a frequency domain inner fringing capacitor-sensor for measuring StWC which operates at 100 MHz frequency. The capacitor-sensor consists of two wave guides (5-mm-wide braided metal) that snugly fit around the surface of a stem with a spacing of 4-5 mm between guides. Laboratory measurements on analog stems reveals that the DC signal output responds linearly to the relative dielectric constant of the analog stem, is most sensitive to water content between the waveguides to a depth of c. 3 mm from the stem surface, and calibrations based on the gravimetric water loss of excised stems of plants revealed a resolution in StWC of < ± 0.001 v/ v. The sensor performed very well on whole plants with a 100-fold increased resolution compared with previous frequency domain and time domain reflectometry methods and, hence, may be very useful for future research requiring nondestructive measurements of whole plants.


Asunto(s)
Tallos de la Planta/fisiología , Agua/fisiología , Sequías , Capacidad Eléctrica , Especificidad de la Especie , Xilema/fisiología
11.
Clin Exp Otorhinolaryngol ; 5(3): 132-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22977709

RESUMEN

OBJECTIVES: Apoptosis may play an important role in the mechanism underlying the GJB2 gene conditional knockout (cCx26) mice cochlear cell death. The objective of this study was to explore the the damage mode of the outer hair cells (OHCs) and its real time point of apoptosis and provide information to further explore the role of apoptosis in the happening of hearing loss in cCx26 mice. METHODS: Cochleae from mice at various developmental stages (P8, P12, and P21) were dissected out and first used to be observed under the scanning electron microscope (SEM). Basilar membranes from mice at P8, P14, P18, and P21 were stained by fluorescein isothiocyanate-conjugated phalloidin and propidium iodide (PI) and examined under confocal microscope. RESULTS: The loss of OHCs of cCx26 knockout mice was first set between P12 and P21 under SEM. Whole mount phalloidin and PI staining revealed that obvious apoptotic appearance of the OHCs surface morphology was observed at P18. CONCLUSION: Typical apoptotic morphology was found in the OHCs in the organ of Corti of the cCx26 mice at P18. This may provide information to further study the role of apoptosis in the occurrence of hearing loss of cCx26 mice.

12.
Acta Otolaryngol ; 130(7): 799-803, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20095872

RESUMEN

CONCLUSION: The three most common GJB2 mutations found in the Chinese populations, c.235delC, c.299-300delAT, and c.176-191de1 (16) bp, cannot form gap junctons (GJs) in the plasma membrane. These mutant proteins were retained in the endoplasmic reticulum (ER), suggesting that ER stress (ERS) and subsequent ERS-induced cell death may be responsible for hearing loss caused by these GJB2 truncation mutations. OBJECTIVES: The objective of this study was to investigate the subcellular location of the protein products of three GJB2 mutants (c.235de1C, c.299-300delAT, and c.176-191de1 (16) bp) and to explore the deafness mechanism caused by these GJB2 truncation mutations. METHODS: Mutant-eGFP fusion protein vectors were constructed by PCR and TA cloning. HEK293 cells were transfected by a liposome-mediated method. Transfected cells were incubated with ER-Tracker and observed under a confocal microscope. RESULTS: Cells transfected with wild type gave characteristic punctuate patterns of GJs in the cell membrane. In contrast, c.235de1C, c.299-300delAT, and c.176-191de1 (16) bp mutant proteins were found to be trapped in the ER, and were therefore unable to form GJs in the plasma membrane.


Asunto(s)
Conexinas/metabolismo , Retículo Endoplásmico/metabolismo , Pérdida Auditiva Sensorineural/genética , Western Blotting , China , Conexina 26 , Conexinas/genética , Humanos , Microscopía Confocal , Proteínas Mutantes/metabolismo , Mutación , Transfección
13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(7): 1759-63, 2009 Jul.
Artículo en Chino | MEDLINE | ID: mdl-19798934

RESUMEN

Using 25 soil samples with known textural compositions, 2 types of NIR instruments, 3 spectral methods associated with 3 spectrum ranges and 3 sampling intervals, the approach to soil textural classification was investigated. From the results obtained, the following conclusions can be drawn: (1) The chemical information could be identified from the peak of the spectral curves, whereas the slope and intercept of spectral curves concerning soil texture resulted from the physical properties of soil samples. Moreover, the intensity of chemical and physical properties varied in different spectra; (2) The distinguishing ability of NIR was limited, depending on the classification criterion proposed; (3) Being tested with four classifaction criterions, the maximal predicting probability was 72%. In the case of sand < 70% and clay < 40%, the maximum was up to 85%; (4) Either acquiring scatter information from the surface of soil samples or extending spectral bands could improve the predicting probability.

14.
Artículo en Chino | MEDLINE | ID: mdl-20041603

RESUMEN

OBJECTIVE: To construct GJB2 gene mutations common in Chinese EGFP fusion protein vectors, and to search for better way to study the mechanism of deletion mutations in GJB2 gene. METHOD: Non-fusion protein vectors of 235delC, 299-300 del AT and 176 del 16 bp were first made by point mutation methods in vitro. Then expression part of the upper 3 mutations were amplified by PCR and the PCR products were cloned into TA cloning vector. After cutting by restriction enzymes EcoRI/BamHI, three deletion mutations were inserted into pEGFP-N1 vector. Sequencing was used to verify the validity of the fusion protein vectors. HEK293 cells were transfected with the recombinant DNA samples by the liposome complex method. RESULT: The recombined plasmids were highly expressed in HEK293 cells. Green fluorescence signals were distributed uniformly in cytoplasm. CONCLUSION: GJB2 mutations common in Chinese EGFP fusion protein vectors were constructed successfully. It may provide a better way to explore the reasons of nonsyndromic hearing loss common in Chinese.


Asunto(s)
Conexinas/genética , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Eliminación de Secuencia , Pueblo Asiatico/genética , Conexina 26 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...