Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Diabetes Metab Syndr Obes ; 17: 1359-1366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525163

RESUMEN

Objective: This study aims to investigate the clinical application value of high-frequency ultrasound technology in diagnosing subcutaneous lipohypertrophy at insulin injection sites in diabetes patients. Methods: All diabetes patients treated in our hospital from January 2022 to January 2023 were selected as the study subjects. The incidence of subcutaneous lipohypertrophy was calculated at the end of the study period. All patients were screened, and those meeting the inclusion criteria were registered, and basic data were collected. Patients were screened for subcutaneous lipohypertrophy using conventional clinical examination (control group) and high-frequency ultrasound technology (study group). Results: The study found that the incidence of subcutaneous lipohypertrophy in diabetes patients receiving insulin injections in our hospital from January 2022 to January 2023 was 80.99%. The average longitudinal diameter of subcutaneous lipohypertrophy in these patients was 11.66 (7.56, 21.44) mm, the transverse diameter was 12.04 (8.96, 18.29) mm, depth was (5.62±2.17) mm, and the area was 188.79 (76.85, 331.78) mm². The clinical detection rate in the study group was higher than that in the control group (P<0.05). The quantity of detected sites was greater in the study group compared to the control group (P<0.05). Conclusion: The incidence of subcutaneous lipohypertrophy in diabetes patients receiving insulin injections is relatively high clinically, and high-frequency ultrasound technology demonstrates significant potential in diagnosis. By providing high-resolution imaging and quantitative data, it effectively improves the clinical detection rate and clarifies symptoms. This technology is likely to become an important auxiliary tool in future diabetes treatment, providing more precise treatment plans for patients.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38530339

RESUMEN

The baijiu fermentation environment hosts a variety of micro-organisms, some of which still remain uncultured and uncharacterized. In this study, the isolation, cultivation and characterization of three novel aerobic bacterial strains are described. The cells of strain REN20T were Gram-negative, strictly aerobic, motile and grew at 26-37 °C, at pH 6.0-9.0 and in the presence of 0-5.0   % (w/v) NaCl. The cells of strain REN29T were Gram-negative, strictly aerobic, motile and grew at 15-30 °C, at pH 6.0-9.0 and in the presence of 0-10.0   % (w/v) NaCl. The cells of strain REN33T were Gram-positive, strictly aerobic, motile and grew at 15-37 °C, at pH 5.0-10.0 and in the presence of 0-7.0   % (w/v) NaCl. The digital DNA-DNA hybridization and average nucleotide identity by orthology values between type strains in related genera and REN20T (20.3-36.8 % and 79.8-89.9  %), REN29T (20.3-36.8  % and 74.5-88.5  %) and REN33T (22.6-48.6  % and 75.8-84.2  %) were below the standard cut-off criteria for the delineation of bacterial species, respectively. Based on polyphasic taxonomy analysis, we propose three new species, Bosea beijingensis sp. nov. (=REN20T=GDMCC 1.2894T=JCM 35118T), Telluria beijingensis sp. nov. (=REN29T=GDMCC 1.2896T=JCM 35119T) and Agrococcus beijingensis sp. nov. (=REN33T=GDMCC 1.2898T=JCM 35164T), which were recovered during cultivation and isolation from baijiu mash.


Asunto(s)
Actinomycetales , Bradyrhizobiaceae , Oxalobacteraceae , Cloruro de Sodio , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Bacterias Aerobias
3.
Front Immunol ; 15: 1329009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455045

RESUMEN

Objectives: The most frequent cause of kidney damage in systemic lupus erythematosus (SLE) is lupus nephritis (LN), which is also a significant risk factor for morbidity and mortality. Lactate metabolism and protein lactylation might be related to the development of LN. However, there is still a lack of relative research to prove the hypothesis. Hence, this study was conducted to screen the lactate-related biomarkers for LN and analyze the underlying mechanism. Methods: To identify differentially expressed genes (DEGs) in the training set (GSE32591, GSE127797), we conducted a differential expression analysis (LN samples versus normal samples). Then, module genes were mined using WGCNA concerning LN. The overlapping of DEGs, critical module genes, and lactate-related genes (LRGs) was used to create the lactate-related differentially expressed genes (LR-DEGs). By using a machine-learning algorithm, ROC, and expression levels, biomarkers were discovered. We also carried out an immune infiltration study based on biomarkers and GSEA. Results: A sum of 1259 DEGs was obtained between LN and normal groups. Then, 3800 module genes in reference to LN were procured. 19 LR-DEGs were screened out by the intersection of DEGs, key module genes, and LRGs. Moreover, 8 pivotal genes were acquired via two machine-learning algorithms. Subsequently, 3 biomarkers related to lactate metabolism were obtained, including COQ2, COQ4, and NDUFV1. And these three biomarkers were enriched in pathways 'antigen processing and presentation' and 'NOD-like receptor signaling pathway'. We found that Macrophages M0 and T cells regulatory (Tregs) were associated with these three biomarkers as well. Conclusion: Overall, the results indicated that lactate-related biomarkers COQ2, COQ4, and NDUFV1 were associated with LN, which laid a theoretical foundation for the diagnosis and treatment of LN.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Ácido Láctico , Biomarcadores , Transducción de Señal
4.
J Appl Toxicol ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38339870

RESUMEN

N,N-dimethylformamide (DMF) is a universally used industrial material with exponential growth in production and consumption worldwide. The frequently reported occupational DMF poisoning cases in some countries and the gradually recognized unavoidable health risks to the general population highlight that DMF should still be a matter of concern. Previous studies have demonstrated that the liver is the primary target organ of DMF exposure and multiple mechanisms have been revealed. However, most of these studies investigate the detrimental effects of acute and subacute DMF exposure, while the effects of chronic DMF exposure are rarely studied. Furthermore, the key mechanism for the acute hepatotoxicity of DMF remains to be elucidated. Future research may focus on the identification of efficient preventive measures against the toxicity of DMF to occupational workers, the investigation of the detrimental effects of DMF at environmentally relevant doses, and the studies on the elimination and recycling of DMF in industrial wastes. Herein, we present an updated review of the metabolism of DMF, the biomarker of DMF exposure, underlying molecular mechanisms of DMF-induced hepatotoxicity, and the toxicity of DMF to both occupational workers and general populations and discuss the possible directions in future studies.

5.
Interdiscip Sci ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206558

RESUMEN

 Long noncoding RNAs (lncRNAs) have significant regulatory roles in gene expression. Interactions with proteins are one of the ways lncRNAs play their roles. Since experiments to determine lncRNA-protein interactions (LPIs) are expensive and time-consuming, many computational methods for predicting LPIs have been proposed as alternatives. In the LPIs prediction problem, there commonly exists the imbalance in the distribution of positive and negative samples. However, there are few existing methods that give specific consideration to this problem. In this paper, we proposed a new clustering-based LPIs prediction method using segmented k-mer frequencies and multi-space clustering (LPI-SKMSC). It was dedicated to handling the imbalance of positive and negative samples. We constructed segmented k-mer frequencies to obtain global and local features of lncRNA and protein sequences. Then, the multi-space clustering was applied to LPI-SKMSC. The convolutional neural network (CNN)-based encoders were used to map different features of a sample to different spaces. It used multiple spaces to jointly constrain the classification of samples. Finally, the distances between the output features of the encoder and the cluster center in each space were calculated. The sum of distances in all spaces was compared with the cluster radius to predict the LPIs. We performed cross-validation on 3 public datasets and LPI-SKMSC showed the best performance compared to other existing methods. Experimental results showed that LPI-SKMSC could predict LPIs more effectively when faced with imbalanced positive and negative samples. In addition, we illustrated that our model was better at uncovering potential lncRNA-protein interaction pairs.

6.
Environ Pollut ; 343: 123275, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163628

RESUMEN

PM2.5-bound metal contaminants are associated with multiple chronic diseases in human. At global level, the contamination status has not been well controlled yet. Here we report findings from a long-term air pollution surveillance in Jinan city of Shandong, China. During 2014-2022, the dynamics and trends of PM2.5-bound heavy metal contaminants were monitored in an industrial area and a downtown area. The surveillance targets included: antimony (Sb), aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), manganese (Mn), nickel (Ni), selenium (Se). The human exposure and health risks were calculated and we found that the health risks of most contaminants showed peak values in autumn and winter. But Al, Mn, Hg and Be were found to result in highest health risk in spring or summer in the downtown area. In the industrial area we identified 100% alarming health index >1 (ranged from 1.12 to 3.35) in autumn and winter. In winter the total non-carcinogenic HI was all above 1 (peak value 2.21). Mn and As together posed >85% non-carcinogenic risk. As and Cd were ranked as major drivers of carcinogenic risks (5.84 × 10-6 and 2.78 × 10-6). Pd and Cd both showed non-negligible environmental levels but risk assessment model for their air-exposure associated non-carcinogenic risks are not yet available. This study updates air pollution data and status for air pollution status in China. This study provides valuable 9 year long-term reference to experimental and field studies in the related fields.


Asunto(s)
Contaminación del Aire , Arsénico , Mercurio , Metales Pesados , Humanos , Cadmio , Contaminación del Aire/análisis , Metales Pesados/análisis , Arsénico/análisis , Carcinógenos , Manganeso , Monitoreo del Ambiente , China/epidemiología , Aluminio , Material Particulado/análisis , Medición de Riesgo
7.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38251119

RESUMEN

In recent years, with the rapid advancement in various high-tech technologies, efficient heat dissipation has become a key issue restricting the further development of high-power-density electronic devices and components. Concurrently, the demand for thermal comfort has increased; making effective personal thermal management a current research hotspot. There is a growing demand for thermally conductive materials that are diversified and specific. Therefore, smart thermally conductive fiber materials characterized by their high thermal conductivity and smart response properties have gained increasing attention. This review provides a comprehensive overview of emerging materials and approaches in the development of smart thermally conductive fiber materials. It categorizes them into composite thermally conductive fibers filled with high thermal conductivity fillers, electrically heated thermally conductive fiber materials, thermally radiative thermally conductive fiber materials, and phase change thermally conductive fiber materials. Finally, the challenges and opportunities faced by smart thermally conductive fiber materials are discussed and prospects for their future development are presented.

8.
Tissue Cell ; 86: 102262, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984224

RESUMEN

Previous studies demonstrated that phosphatases play a pivotal role in modulating inflammation-associated signal transduction, particularly in the context of heat shock, where Mitogen-Activated Protein Kinase Phosphatase-1 (MKP-1) appears to have a central role. Recently, Human Antigen R (HuR) has also been identified as a factor that enhances stress-response protein MKP-1 levels. Consequently, we have directed our interest towards elucidating the mechanisms by which heat shock induces MKP-1 mRNA stabilization, dependent on HuR via the p38 MAPK Signaling Cascade. In this study, we subjected Mouse Embryonic Fibroblast (Mef) cells to heat shock treatment, resulting in a potent stabilization MKP-1 mRNA. The RNA-binding protein HuR, known to influence mRNA, was observed to bind to the MKP-1 AU-rich 3 ´untranslated region. Transfection of p38 wild-type Mef cells with a flag-HuR plasmid resulted in a significant increase in MKP-1 mRNA stability. Interestingly, transfection of the siRNA for HuR into Mef cells resulted in diminished MKP-1 mRNA stability following heat shock, inhibition of p38 MAPK activity effectively curtailed heat shock-mediated MKP-1 mRNA stability. Immunofluorescence analyses further revealed that the translocation of HuR was contingent on p38 MAPK Signaling Cascade. Collectively, these findings underscore the regulatory role of heat shock in MKP-1 gene expression at posttranscriptional levels. The mechanisms underlying the observed increased MKP-1 mRNA stability are shown to be partially dependent on HuR through the p38 MAPK Signaling Cascade.


Asunto(s)
Fibroblastos , Transducción de Señal , Animales , Ratones , Humanos , Fibroblastos/metabolismo , Transducción de Señal/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Respuesta al Choque Térmico/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
ACS Appl Mater Interfaces ; 15(51): 59912-59919, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38103207

RESUMEN

CoSb3-based filled skutterudites (SKDs) are among the most promising materials for power generation. However, the poor interfacial stability and mechanical strength severely limit their practical application when joined with Cu electrodes. In this study, we propose multiphase Ti-based alloy barrier layers for CoSb3-based thermoelectric junctions to prevent the continuous brittle TiCoSb phase formation. Following the principles of coefficient of thermal expansion matching, we designed three types of Ti80-xNbxCo20 (x = 0, 5, and 10, at.%) barrier layers with the thin intermetallic compound (IMC) layers (<20 µm). Transmission electron microscopy analysis revealed that the interfacial microstructure of the Ti75Nb5Co20/Ce-SKD junction comprises Ti5Sb3, Ti5CoSb3, TiCoSb, and TiSb2 phases, as well as unreacted TiCo, Ti2Co, and Ti(Nb)ss phases, demonstrating a uniform staggered distribution state. After aging tests, the IMC thickness increased gradually from 7 to 12 µm, and the interfacial contact resistivity increased from 7.59 to 15.46 µΩ·cm2. A Cu layer was chosen as a buffer during the brazing process to prevent the formation of cracks and holes. After aging for 360 h at 823 K, the shear strength of the brazed joints remained at ∼21 MPa. Our results demonstrate that the Cu/CuSnP/Cu/Ti75Nb5Co20/Ce-SKD brazed joint exhibits excellent interfacial stability and satisfactory mechanical strength.

10.
Diagnostics (Basel) ; 13(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37892038

RESUMEN

The study aims to develop a decision pathway based on HEAR score and 0 h high-sensitivity cardiac troponin T (hs-cTnT) to safely avoid a second troponin test for suspected non-ST elevation myocardial infarction (NSTEMI) in emergency departments. A HEAR score consists of history, electrocardiogram, age, and risk factors. A HEAR pathway is established using a Bayesian approach based on a predefined safety threshold of NSTEMI prevalence in the rule-out group. In total, 7131 patients were retrospectively enrolled, 582 (8.2%) with index visit NSTEMI and 940 (13.2%) with 180-day major adverse cardiovascular events (MACE). For patients with a low-risk HEAR score (0 to 2) and low 0 h hs-cTnT (<14 ng/L), the HEAR pathway recommends early discharge without further testing. After the HEAR pathway had been applied to rule out NSTEMI, the negative predictive value of index visit NSTEMI was 100.0% (95% CI, 99.8% to 100.0%) and false-negative rate of 180-day MACE was 0.40% (95% CI, 0.18% to 0.87%). Compared with the 0 h hs-cTnT < limit of detection (LoD) strategy (<5 ng/L), the HEAR pathway could correctly reclassify 1298 patients without MACE as low risk and lead to a 18.2% decrease (95% CI, 17.4-19.1%) in the need for a second troponin test. The HEAR pathway may lead to a substantial and safe reduction in repeated troponin test for emergency department patients with suspected NSTEMI.

11.
Clin Immunol ; 256: 109778, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37730009

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the dysregulation of B cell subpopulation and function. Recent studies have suggested a potential role of ferroptosis, an iron-dependent form of regulated cell death, in the pathogenesis of SLE. Here, we demonstrate that B-cell ferroptosis occurs both in lupus patients and MRL/lpr mice. Treatment with liproxstatin-1, a potent ferroptosis inhibitor, could reduce autoantibody production, improve renal damage, and alleviate lupus symptoms in vivo. Furthermore, our results suggest that ferroptosis may regulate B cell differentiation and plasma cell formation, indicating a potential mechanism for its involvement in SLE. Taken together, targeting ferroptosis in B cells may be a promising therapeutic strategy for SLE.


Asunto(s)
Ferroptosis , Lupus Eritematoso Sistémico , Humanos , Ratones , Animales , Ratones Endogámicos MRL lpr , Linfocitos B , Riñón/patología
12.
J Fungi (Basel) ; 9(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37623589

RESUMEN

Clonostachys rosea is an important mycoparasitism biocontrol agent that exhibits excellent control efficacy against numerous fungal plant pathogens. Transcriptomic sequencing may be used to preliminarily screen mycoparasitism-related genes of C. rosea against fungal pathogens. The present study sequenced and analyzed the transcriptome of C. rosea mycoparasitizing a Basidiomycota (phylum) fungal pathogen, Rhizoctonia solani, under three touch stages: the pre-touch stage, touch stage and after-touch stage. The results showed that a number of genes were differentially expressed during C. rosea mycoparasitization of R. solani. At the pre-touch stage, 154 and 315 genes were up- and down-regulated, respectively. At the touch stage, the numbers of up- and down-regulated differentially expressed genes (DEGs) were 163 and 188, respectively. The after-touch stage obtained the highest number of DEGs, with 412 and 326 DEGs being up- and down-regulated, respectively. Among these DEGs, ABC transporter-, glucanase- and chitinase-encoding genes were selected as potential mycoparasitic genes according to a phylogenetic analysis. A comparative transcriptomic analysis between C. rosea mycoparasitizing R. solani and Sclerotinia sclerotiorum showed that several DEGs, including the tartrate transporter, SDR family oxidoreductase, metallophosphoesterase, gluconate 5-dehydrogenase and pyruvate carboxylase, were uniquely expressed in C. rosea mycoparasitizing R. solani. These results significantly expand our knowledge of mycoparasitism-related genes in C. rosea and elucidate the mycoparasitism mechanism of C. rosea.

13.
J Fungi (Basel) ; 9(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37623632

RESUMEN

Clonostachys rosea is an excellent biocontrol fungus against numerous fungal plant pathogens. The cAMP signaling pathway is a crucial signal transduction pathway in fungi. To date, the role of the cAMP signaling pathway in C. rosea mycoparasitism remains unknown. An adenylate cyclase-encoding gene, crac (an important component of the cAMP signaling pathway), was previously screened from C. rosea 67-1, and its expression level was dramatically upregulated during the C. rosea mycoparasitization of the sclerotia of Sclerotinia sclerotiorum. In this study, the function of crac in C. rosea mycoparasitism was explored through gene knockout and complementation. The obtained results show that the deletion of crac influenced the growth rate and colony morphology of C. rosea, as well as the tolerance to NaCl and H2O2 stress. The mycoparasitic effects on the sclerotia of S. sclerotiorum and the biocontrol capacity on soybean Sclerotinia stem rot in ∆crac-6 and ∆crac-13 were both attenuated compared with that of the wild-type strain and complementation transformants. To understand the regulatory mechanism of crac during C. rosea mycoparasitism, transcriptomic analysis was conducted between the wild-type strain and knockout mutant. A number of biocontrol-related genes, including genes encoding cell wall-degrading enzymes and transporters, were significantly differentially expressed during C. rosea mycoparasitism, suggesting that crac may be involved in C. rosea mycoparasitism by regulating the expression of these DEGs. These findings provide insight for further exploring the molecular mechanism of C. rosea mycoparasitism.

14.
J Dig Dis ; 24(8-9): 461-471, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37548312

RESUMEN

OBJECTIVE: To assess the clinical efficacy of fucoidan-assisted standard quadruple therapy (SQT) in Helicobacter pylori (H. pylori) eradication and the improvement of gut microbiota. METHODS: An open-label randomized controlled trial was conducted at the Affiliated Hospital of Qingdao University in Shandong Province, China. Ninety patients who tested positive for H. pylori were randomized to the standard quadruple therapy (SQT) group (SQ), SQT + fucoidan combination group (SF), and fucoidan + sequential SQT group (FS), respectively. Stool samples were collected for gut microbiota composition at baseline and after treatment. RESULTS: After H. pylori eradication, the relative abundances of most conditional pathogens in the SQ decreased, while those of several beneficial bacteria increased or decreased (P < 0.05). In FS, the abundances of most beneficial bacteria increased gradually from baseline to week 12, while those of the conditional pathogens decreased (P < 0.05). The abundance of Bifidobacterium had a decreasing trend in SQ, but remained unchanged in SF and increased in FS (P < 0.05). The abundances of most beneficial bacteria were significantly higher in FS than in SQ and SF (P < 0.05). Addition of fucoidan enhanced symptom improvement during H. pylori eradication compared with SQT alone. CONCLUSIONS: Fucoidan considerably improved gut dysbiosis during SQT for H. pylori eradication. Gut microbiota can be maintained by the addition of fucoidan before eradication therapy with SQT rather than by concomitant addition with therapy. Fucoidan-assisted SQT could relieve gastrointestinal symptoms during H. pylori eradication.

15.
Toxicol Res (Camb) ; 12(3): 480-492, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37397912

RESUMEN

High-fat diet (HFD) and ethanol could synergistically induce liver damage, but the underlying mechanisms remain to be elucidated. M1-polarized macrophages have been demonstrated to be key players in ethanol-induced liver damage. The current study was designed to investigate whether hepatic steatosis could promote ethanol-induced liver injury by promoting liver macrophage M1 polarization. In the in vivo study, 12 weeks of HFD feeding induced a moderate increase in the F4/80 expression and protein levels of p-IKKα/ß, p-IκBα, and p-p65, which was suppressed by single binge. In contrast, 8 weeks of HFD and multiple binges (two binges per week during the last 4 weeks) synergistically increased the F4/80 expression, mRNA levels of M1 polarization biomarkers including Ccl2, Tnfa, and Il1b, and protein levels of p65, p-p65, COX2, and Caspase 1. In the in vitro study, a nontoxic free fatty acids (FFAs) mixture (oleic acid/palmitic acid = 2: 1) induced a moderate increase of protein levels of p-p65 and NLRP3 in murine AML12 hepatocytes, which was inhibited by ethanol co-exposure. Ethanol alone induced proinflammatory polarization of murine J774A.1 macrophages evidenced by the enhanced secretion of TNF-α, increased mRNA levels of Ccl2, Tnfa, and Il1b, and upregulated protein levels of p65, p-p65, NLRP3, and Caspase 1, which was augmented by FFAs exposure. Collectively, these results suggest that HFD and multiple binges could synergistically induce liver damage by promoting the proinflammatory activation of macrophages in mice livers.

16.
Front Med (Lausanne) ; 10: 1181572, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396920

RESUMEN

Alopecia areata (AA) is an inflammatory autoimmune disease characterized by non-scarring hair loss on the scalp or any other part of the hair-bearing skin. While the collapse of the immune privilege is considered as one of the most accepted theories accounting for AA, the exact pathogenesis of this disease remains unclear by now. Other factors, such as genetic predisposition, allergies, microbiota, and psychological stress, also play an important role in the occurrence and development of AA. Oxidative stress (OS), an unbalance between the oxidation and antioxidant defense systems, is believed to be associated with AA and may trigger the collapse of hair follicle-immune privilege. In this review, we examine the evidence of oxidative stress in AA patients, as well as the relationship between the pathogenesis of AA and OS. In the future, antioxidants may play a new role as a supplementary therapy for AA.

17.
PLoS One ; 18(7): e0288753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37478083

RESUMEN

Underground roadway excavation is a complex process, especially roadway curved excavation. In addition, the rationality of the design of coal mine roadway excavation scheme directly affects the speed of roadway excavation. The more reasonable the scheme design, the more conducive to rapid excavation. In order to avoid the influence of invalid construction on the efficiency of roadway excavation, this paper studies the forming of roadway bend. Based on the analysis of the tunneling process of the roadway curve, the mathematical model of the roadway curve is established. Taking the turning radius of the roadway curve as the evaluation index, the influence of various factors on the roadway curve excavation is analyzed. The research shows that the radius of the roadway curve increases with the increase of the feed rate, the working space position of the roadheader and the required width of the roadway, and decreases with the increase of the working space angle. Then, combined with the advantages of KNN algorithm, an interpolation model for calculating the radius of the curve is established based on RBF algorithm, and the radius of the tunnel curve is reconstructed and predicted. It provides a basis for the rational design of the construction process of the roadway bend and a reliable numerical algorithm for the design of the radius of the roadway bend. It also provides a theoretical basis for improving the efficiency of high roadway excavation in coal mines.


Asunto(s)
Minas de Carbón , Modelos Teóricos , Carbón Mineral , Algoritmos
18.
Front Neurosci ; 17: 1191574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274221

RESUMEN

In this study, a multiple-constraint estimation algorithm is presented to estimate the 3D shape of a 2D image sequence. Given the training data, a sparse representation model with an elastic net, i.e., l1-norm and l2-norm constraints, is devised to extract the shape bases. In the sparse model, the l1-norm and l2-norm constraints are enforced to regulate the sparsity and scale of coefficients, respectively. After obtaining the shape bases, a penalized least-square model is formulated to estimate 3D shape and motion, by considering the orthogonal constraint of the transformation matrix, and the similarity constraint between the 2D observations and the shape bases. Moreover, an Augmented Lagrange Multipliers (ALM) iterative algorithm is adopted to solve the optimization of the proposed approach. Experimental results on the well-known CMU image sequences demonstrate the effectiveness and feasibility of the proposed model.

19.
Interdiscip Sci ; 15(3): 465-479, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37233959

RESUMEN

Circular RNAs (circRNAs) participate in the regulation of biological processes by binding to specific proteins and thus influence transcriptional processes. In recent years, circRNAs have become an emerging hotspot in RNA research. Due to powerful learning ability, the various deep learning frameworks have been used to predict the binding sites of RNA-binding protein (RPB) on circRNAs. These methods usually perform only single-level feature extraction of sequence information. However, the feature acquisition may be inadequate for single-level extraction. Generally, the features of deep and shallow layers of neural network can complement each other and are both important for binding site prediction tasks. Based on this concept, we propose a method that combines deep and shallow features, namely CRBP-HFEF. Specifically, features are first extracted and expanded for different levels of network. Then, the expanded deep and shallow features are fused and fed into the classification network, which finally determines whether they are binding sites. Compared to several existing methods, the experimental results on multiple datasets show that the proposed method achieves significant improvements in a number of metrics (with an average AUC of 0.9855). Moreover, much sufficient ablation experiments are also performed to verify the effectiveness of the hierarchical feature expansion strategy.


Asunto(s)
Redes Neurales de la Computación , ARN Circular , ARN Circular/genética , Sitios de Unión , ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
20.
Foods ; 12(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37238887

RESUMEN

Resistant starch appears to have promising effects on hypertension, cardiovascular and enteric illness. The influence of resistant starch on intestinal physiological function has drawn great attention. In this study, we first analyzed the physicochemical characteristics, including the crystalline properties, amylose content, and anti-digestibility among different types of buckwheat-resistant starch. The influence of resistant starch on the physiological functions of the mouse intestinal system, contained defecation, and intestinal microbes were also evaluated. The results showed that the crystalline mold of buckwheat-resistant starch changed from A to B + V after acid hydrolysis treatment (AHT) and autoclaving enzymatic debranching treatment (AEDT). The amylose content in AEDT was higher than in AHT and raw buckwheat. Moreover, the anti-digestibility of AEDT was also stronger than that in AHT and raw buckwheat. The buckwheat-resistant starch can promote bowel intestinal tract movement. The quantity of intestinal microbe was regulated by buckwheat-resistant starch. Our research demonstrates an effective preparation method for improving the quality of buckwheat-resistant starch and found that buckwheat-resistant starch has the role of adjusting the distribution of the intestinal flora and maintaining the health of the body.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA