Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674560

RESUMEN

Lotus japonicus, is an important perennial model legume, has been widely used for studying biological processes such as symbiotic nitrogen fixation, proanthocyanidin (PA) biosynthesis, and abiotic stress response. High-quality L. japonicus genomes have been reported recently; however, the genetic basis of genes associated with specific characters including proanthocyanidin distribution in most tissues and tolerance to stress has not been systematically explored yet. Here, based on our previous high-quality L. japonicus genome assembly and annotation, we compared the L. japonicus MG-20 genome with those of other legume species. We revealed the expansive and specific gene families enriched in secondary metabolite biosynthesis and the detection of external stimuli. We suggested that increased copy numbers and transcription of PA-related genes contribute to PA accumulation in the stem, petiole, flower, pod, and seed coat of L. japonicus. Meanwhile, According to shared and unique transcription factors responding to five abiotic stresses, we revealed that MYB and AP2/ERF play more crucial roles in abiotic stresses. Our study provides new insights into the key agricultural traits of L. japonicus including PA biosynthesis and response to abiotic stress. This may provide valuable gene resources for legume forage abiotic stress resistance and nutrient improvement.

2.
J Integr Plant Biol ; 65(5): 1147-1152, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36537698

RESUMEN

The roots of legume plant play a crucial role in nitrogen fixation. However, the transcriptomes of different cell types of legume root and their functions remain largely unknown. Here, we performed single-cell RNA sequencing and profiled more than 22,000 single cells from root tips of Lotus japonicus, a model species of legume. We identified seven clusters corresponding to seven major cell types, which were validated by in situ hybridization. Further analysis revealed regulatory programs including phytohormone and nodulation associated with specific cell types, and revealed conserved and diverged features for the cell types. Our results represent the first single-cell resolution transcriptome for legume root tips and a valuable resource for studying the developmental and physiological functions of various cell types in legumes.


Asunto(s)
Lotus , Lotus/genética , Lotus/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Análisis de Expresión Génica de una Sola Célula , Simbiosis/genética , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética
3.
BMC Plant Biol ; 21(1): 605, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34965872

RESUMEN

BACKGROUND: The APETALA2/ethylene response factor (AP2/ERF) family are important regulatory factors involved in plants' response to environmental stimuli. However, their roles in salt tolerance in Lotus corniculatus remain unclear. RESULTS: Here, the key salt-responsive transcription factor LcERF056 was cloned and characterised. LcERF056 belonging to the B3-1 (IX) subfamily of ERFs was considerably upregulated by salt treatment. LcERF056-fused GFP was exclusively localised to nuclei. Furthermore, LcERF056- overexpression (OE) transgenic Arabidopsis and L. corniculatus lines exhibited significantly high tolerance to salt treatment compared with wild-type (WT) or RNA interference expression (RNAi) transgenic lines at the phenotypic and physiological levels. Transcriptome analysis of OE, RNAi, and WT lines showed that LcERF056 regulated the downstream genes involved in several metabolic pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) and yeast one-hybrid (Y1H) assay demonstrated that LcERF056 could bind to cis-element GCC box or DRE of reactive oxygen species (ROS)-related genes such as lipid-transfer protein, peroxidase and ribosomal protein. CONCLUSION: Our results suggested that the key regulator LcERF056 plays important roles in salt tolerance in L. corniculatus by modulating ROS-related genes. Therefore, it may be a useful target for engineering salt-tolerant L. corniculatus or other crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lotus/fisiología , Oxígeno/metabolismo , Proteínas de Plantas/fisiología , Tolerancia a la Sal/fisiología , Factores de Transcripción/fisiología , Núcleo Celular/metabolismo , Lotus/genética , Tolerancia a la Sal/genética
4.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299158

RESUMEN

Polycomb group (PcG) proteins, which are important epigenetic regulators, play essential roles in the regulatory networks involved in plant growth, development, and environmental stress responses. Currently, as far as we know, no comprehensive and systematic study has been carried out on the PcG family in Medicago truncatula. In the present study, we identified 64 PcG genes with distinct gene structures from the M. truncatula genome. All of the PcG genes were distributed unevenly over eight chromosomes, of which 26 genes underwent gene duplication. The prediction of protein interaction network indicated that 34 M. truncatula PcG proteins exhibited protein-protein interactions, and MtMSI1;4 and MtVRN2 had the largest number of protein-protein interactions. Based on phylogenetic analysis, we divided 375 PcG proteins from 27 species into three groups and nine subgroups. Group I and Group III were composed of five components from the PRC1 complex, and Group II was composed of four components from the PRC2 complex. Additionally, we found that seven PcG proteins in M. truncatula were closely related to the corresponding proteins of Cicer arietinum. Syntenic analysis revealed that PcG proteins had evolved more conservatively in dicots than in monocots. M. truncatula had the most collinearity relationships with Glycine max (36 genes), while collinearity with three monocots was rare (eight genes). The analysis of various types of expression data suggested that PcG genes were involved in the regulation and response process of M. truncatula in multiple developmental stages, in different tissues, and for various environmental stimuli. Meanwhile, many differentially expressed genes (DEGs) were identified in the RNA-seq data, which had potential research value in further studies on gene function verification. These findings provide novel and detailed information on the M. truncatula PcG family, and in the future it would be helpful to carry out related research on the PcG family in other legumes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Medicago truncatula/genética , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas del Grupo Polycomb/genética , Estrés Fisiológico , Cromosomas de las Plantas , Perfilación de la Expresión Génica , Medicago truncatula/crecimiento & desarrollo , Filogenia
5.
Appl Microbiol Biotechnol ; 102(1): 9-16, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29022076

RESUMEN

The natural products cyanogenic glycosides (CNglcs) are present in various forage plant species including Sorghum spp., Trifolium spp., and Lotus spp. The release of toxic hydrogen cyanide (HCN) from endogenous CNglcs, which is known as cyanogenesis, leads to a serious problem for animal consumption while as defensive secondary metabolites, CNglcs play multiple roles in plant development and responses to adverse environment. Therefore, it is highly important to fully uncover the molecular mechanisms of CNglc biosynthesis and regulation to manipulate the contents of CNglcs in forage plants for fine-tuning the balance between defensive responses and food safety. This review summarizes recent studies on the production, function, polymorphism, and regulation of CNglcs in forage plants, aiming to provide updated knowledge on the ways to manipulate CNglcs for further beneficial economic effects.


Asunto(s)
Glicósidos/biosíntesis , Glicósidos/genética , Plantas/metabolismo , Animales , Inocuidad de los Alimentos , Regulación de la Expresión Génica de las Plantas , Glicósidos/metabolismo , Cianuro de Hidrógeno/metabolismo , Nitrilos/metabolismo , Plantas/genética , Sorghum/genética , Sorghum/metabolismo
6.
New Phytol ; 216(3): 814-828, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28722263

RESUMEN

Little is known about the molecular mechanism of the R2R3-MYB transcriptional repressors involved in plant phenylpropanoid metabolism. Here, we describe one R2R3-type MYB repressor, FtMYB11 from Fagopyrum tataricum. It contains the SID-like motif GGDFNFDL and it is regulated by both the importin protein 'Sensitive to ABA and Drought 2' (SAD2) and the jasmonates signalling cascade repressor JAZ protein. Yeast two hybrid and bimolecular fluorescence complementation assays demonstrated that FtMYB11 interacts with SAD2 and FtJAZ1. Protoplast transactivation assays demonstrated that FtMYB11 acts synergistically with FtSAD2 or FtJAZ1 and directly represses its target genes via the MYB-core element AATAGTT. Changing the Asp122 residue to Asn in the SID-like motif results in cytoplasmic localization of FtMYB11 because of loss of interaction with SAD2, while changing the Asp126 residue to Asn results in the loss of interaction with FtJAZ1. Overexpression of FtMYB11or FtMYB11D126N in F. tataricum hairy roots resulted in reduced accumulation of rutin, while overexpression of FtMYB11D122N in hairy roots did not lead to such a change. The results indicate that FtMYB11 acts as a regulator via interacting with FtSAD2 or FtJAZ1 to repress phenylpropanoid biosynthesis, and this repression depends on two conserved Asp residues of its SID-like motif.


Asunto(s)
Fagopyrum/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Citoplasma/metabolismo , Fagopyrum/genética , Prueba de Complementación Genética , Mutación , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Rutina/biosíntesis , Rutina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Plant Physiol ; 174(3): 1348-1358, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28483877

RESUMEN

Subgroup 4 of R2R3-MYB transcription factors consists of four members, MYB3, MYB4, MYB7, and MYB32, which possess the conserved EAR repression motif (pdLHLD/LLxiG/S) in their C termini. Here, we show that MYB3 is a newly identified repressor in Arabidopsis (Arabidopsis thaliana) phenylpropanoid biosynthesis. However, the repression mechanism of MYB3 is completely different from MYB4, MYB7, and MYB32. Yeast two-hybrid screening using MYB3 as a bait isolates NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED1 (LNK1) and LNK2, members of a small family of four LNK proteins. The repression activity of MYB3 to cinnamate 4-hydroxylase (C4H) gene expression is directly regulated by corepressors LNK1 and LNK2, which could facilitate binding of MYB3 with C4H promoter. The two conserved Asp residues in both region 1 and 2 domain of LNKs are essential to mediate protein-protein interaction. Importantly, the Extra N-terminal Tail domain plays a negative role in LNK-MYB3 transcription complex-dependent repression of the C4H gene. We conclude that LNK1 and LNK2 act as transcriptional corepressors necessary for expression of the phenylpropanoids biosynthesis gene C4H through recruitment to its promoter via interaction with MYB3.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vías Biosintéticas , Proteínas Co-Represoras/metabolismo , Propanoles/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Ácido Aspártico/metabolismo , Secuencia Conservada , Redes Reguladoras de Genes , Unión Proteica , Dominios Proteicos , Transactivadores/química
8.
Protein Pept Lett ; 23(5): 442-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27001406

RESUMEN

The AP2/ERF play a key role in multiple stress responses in plants. we here report a novel salt stress-related gene, LcAP2/ERF107 that encodes an AP2/ERF protein in Lotus corniculatus cultivar Leo. LcAP2/ERF107 was classified into the soloist subfamiliy based on phylogenetic relationship. The transcription of LcAP2/ERF107 were strongly induced by salt and other phytohormones (ABA, ACC, MeJA). A subcellular localization experiment indicated that LcAP2/ERF107 is a nuclear protein that activates transcription. LcAP2/ERF107 overexpression in Arabidopsis resulted in pleiotropic phenotypes, including higher seed germination rate and transgenic plants with enhanced tolerance to salt stress. Further, under salt tolerance the transgenic lines elevated the relative moisture content; however, the relative electrolyte leakage was lower than in control plants. The expression levels of indicative genes RD22, RD29A, LEA4-5, P5CS1 and P5CS2 were found to be increased in the transgenic plants compared with the WT plants. These results indicated that LcAP2/ERF107 play an important role in the responses of plant to salt stress.


Asunto(s)
Lotus/genética , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Factores de Transcripción/genética , Clonación Molecular , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Lotus/fisiología , Proteínas de Plantas/análisis , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Semillas/química , Semillas/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
Plant J ; 84(2): 395-403, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26332741

RESUMEN

Sub-group 4 R2R3-type MYB transcription factors, including MYB3, MYB4, MYB7 and MYB32, act as repressors in phenylpropanoid metabolism. These proteins contain the conserved MYB domain and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) repression domain. Additionally, MYB4, MYB7 and MYB32 possess a putative zinc-finger domain and a conserved GY/FDFLGL motif in their C-termini. The protein 'sensitive to ABA and drought 2' (SAD2) recognizes the nuclear pore complex, which then transports the SAD2-MYB4 complex into the nucleus. Here, we show that the conserved GY/FDFLGL motif contributes to the interaction between MYB factors and SAD2. The Asp → Asn mutation in the GY/FDFLGL motif abolishes the interaction between MYB transcription factors and SAD2, and therefore they cannot be transported into the nucleus and cannot repress their target genes. We found that MYB4(D261N) loses the capacity to repress expression of the cinnamate 4-hydroxylase (C4H) gene and biosynthesis of sinapoyl malate. Our results indicate conservation among MYB transcription factors in terms of their interaction with SAD2. Therefore, the Asp → Asn mutation may be used to engineer transcription factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Mutación Puntual/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética/genética
10.
Appl Microbiol Biotechnol ; 99(9): 3797-806, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25805345

RESUMEN

Proanthocyanidins (PA), also known as condensed tannins, contribute to important forage legumes traits including disease resistance and forage quality. PA in forage plants has both positive and negative effects on feed digestibility and animal performance. The analytical methods and their applicability in measuring the contents of PA in forage plants are essential to studies on their nutritional effects. In spite of important breakthroughs in our understanding of the PA biosynthesis, important questions still remain to be answered such as the PA polymerization and transport. Recent advances in the understanding of transcription factor-mediated gene regulation mechanisms in anthocyanin and PA biosynthetic pathway in model plants suggest new approaches for the metabolic engineering of PA in forage plants. The present review will attempt to present the state-of-the-art of research in these areas and provide an update on the production and metabolic engineering of PA in forage plants. We hope that this will contribute to a better understanding of the ways in which PA production to manipulate the content of PA for beneficial effects in forage plants.


Asunto(s)
Vías Biosintéticas/genética , Fabaceae/genética , Fabaceae/metabolismo , Regulación de la Expresión Génica de las Plantas , Proantocianidinas/biosíntesis , Transcripción Genética
11.
J Proteomics ; 105: 74-84, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24680693

RESUMEN

Cotton fiber is considered as the backbone of the textile industry. The productivity of cotton crop is severely hampered by the occurrence of pathogens, pests, and various environmental factors. Nevertheless, cotton plant has developed sophisticated mechanisms to respond to environment stresses to avoid detrimental effects on its growth and development. Therefore, understanding the mechanisms of cotton fiber development and environment stress response is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in cotton fiber development and abiotic/biotic stress tolerance has increased dramatically in the last 5years as evidenced by the large amount of publications in this area. This review summarizes the work which has been reported for cotton proteomics and evaluates the findings in context of the approaches that are widely employed with the aim to generate novel insight useful for cotton improvement. BIOLOGICAL SIGNIFICANCE: Cotton (Gossypium spp.) is considered as the foremost commercially important fiber crop grown all over the world and is deemed as the backbone of the textile industry. Cotton is also an important source of edible oil seed and a nutrient-rich food crop as cottonseed contains high-quality protein and oil. The growth and productivity of cotton crop are often hampered by various biotic stress factors, such as insect pests and pathogens. In addition, cotton plants are frequently subjected to unavoidable environmental factors that cause abiotic stress, such as salt, heat and drought. Proteomic techniques provide one of the best options for understanding the gene function and phenotypic changes during cotton fiber development and stress response. This review first summarizes the work which has been reported for cotton proteomics about cotton fiber development and abiotic/biotic stress tolerance, and also evaluates the findings in context of the approaches that are widely employed during last 5years, with the aim to generate novel insight useful for cotton improvement. This article is part of a Special Issue entitled: Proteomics of non-model organisms.


Asunto(s)
Fibra de Algodón , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Estrés Fisiológico , Gossypium/genética , Proteínas de Plantas/genética , Proteoma/genética
12.
Funct Integr Genomics ; 14(3): 453-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24777608

RESUMEN

Lotus corniculatus is used in agriculture as a main forage plant. Members of the Apetala2/ethylene response factor (AP2/ERF) family play important roles in regulating gene expression in response to many forms of stress, including drought and salt. Here, starting from database of the L. corniculatus var. japonicus genome, we identified 127 AP2/ERF genes by insilico cloning method. The phylogeny, gene structures, and putative conserved motifs in L. corniculatus var. japonicus ERF proteins were analyzed. Based on the number of AP2/ERF domains and the function of the genes, 127 AP2/ERF genes from L. corniculatus var. japonicus were classified into five subfamilies named the AP2, dehydration-responsive element binding factor (DREB), ERF, RAV, and a soloist. Outside the AP2/ERF domain, many L. corniculatus var. japonicus-specific conserved motifs were detected. Expression profile analysis of AP2/ERF genes by quantitative real-time PCR revealed that 19 LcERF genes, including LcERF054 (KJ004728), were significantly induced by salt stress. The results showed that the LcERF054 gene encodes a nuclear transcription activator. Overexpression of LcERF054 in Arabidopsis enhanced the tolerances to salt stress, showed higher germination ratio of seeds, and had elevated levels of relative moisture contents, soluble sugars, proline, and lower levels of malondialdehyde under stress conditions compared to wild-type plants. The expression of hyperosmotic salinity response genes COR15A, LEA4-5, P5CS1, and RD29A was found to be elevated in the LcERF054-overexpressing Arabidopsis plants compared to wild type. These results revealed that the LcERF genes play important roles in L. corniculatus cv Leo under salt stress and that LcERFs are attractive engineering targets in applied efforts to improve abiotic stress tolerances in L. corniculatus cv Leo or other crops.


Asunto(s)
Lotus/genética , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Proteínas Represoras/genética , Tolerancia a la Sal/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Secuencia Conservada , Evolución Molecular , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Lotus/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Cloruro de Sodio/metabolismo , Activación Transcripcional
13.
Glycobiology ; 22(12): 1775-85, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22879458

RESUMEN

The raffinose family oligosaccharides (RFOs), such as raffinose and stachyose, are synthesized by a set of distinct galactosyltransferases, which sequentially add galactose units to sucrose. The accumulation of RFOs in plant cells are closely associated with the responses to environmental factors, such as cold, heat and drought stresses. Systematic analysis of genes involved in the raffinose metabolism has not been reported to date. Searching the recently available working draft of the maize genome, six kinds of enzyme genes were speculated, which should encode all the enzymes involved in the raffinose metabolism in maize. Expression patterns of some related putative genes were analyzed. The conserved domains and phylogenetic relationships among the deduced maize proteins and their homologs isolated from other plant species were revealed. It was discovered that some of the key enzymes, such as galactinol synthase (ZmGolS5, ZmGolS45 and ZmGolS37), raffinose synthase (ZmRS1, ZmRS2, ZmRS3 and ZmRS10), stachyose synthase (ZmRS8) and ß-fructofuranosidase, are encoded by multiple gene members with different expression patterns. These results reveal the complexity of the raffinose metabolism and the existence of metabolic channels for diverse RFOs in maize and provide useful information for improving maize stress tolerance through genetic engineering.


Asunto(s)
Galactosiltransferasas/genética , Genoma de Planta , Rafinosa/biosíntesis , Zea mays/enzimología , Disacáridos/metabolismo , Galactosiltransferasas/química , Galactosiltransferasas/metabolismo , Filogenia , Estructura Terciaria de Proteína , Rafinosa/metabolismo , Transcripción Genética , Zea mays/genética , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA