Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neural Eng ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959877

RESUMEN

Introduction Traditionally known for its involvement in emotional processing, the amygdala's involvement in motor control remains relatively unexplored, with sparse investigation into the neural mechanisms governing amygdaloid motor movement and inhibition. Objective This study aimed to characterize the amygdaloid beta-band (13-30 Hz) power between "Go" and "No-go" trials of an arm reaching task. Methods Ten participants with drug-resistant epilepsy implanted with stereoelectroencephalographic (SEEG) electrodes in the amygdala were enrolled in this study. SEEG data was recorded throughout discrete phases of a Direct Reach Go/No-go task, during which participants reached a touchscreen monitor or withheld movement based on a colored cue. Multitaper power analysis along with Wilcoxon signed-rank and Yates-corrected Z tests were used to assess significant modulations of beta power between the Response and Fixation (baseline) phases in the "Go" and "No-go" conditions. Results In the "Go" condition, nine out of the ten participants showed a significant decrease in relative beta-band power during the Response phase (p ≤ 0.0499). In the "No-go" condition, eight out of the ten participants presented a statistically significant increase in relative beta-band power during the Response phase (p ≤ 0.0494). Four out of the eight participants with electrodes in the contralateral hemisphere and seven out of the eight participants with electrodes in the ipsilateral hemisphere presented significant modulation in beta-band power in both the "Go" and "No-go" conditions. At the group level, no significant differences were found between the contralateral and ipsilateral sides or between genders. Conclusion This study reports beta-band power modulation in the human amygdala during voluntary movement in the setting of motor execution and inhibition. This finding supplements prior research in various brain regions associating beta-band power with motor control. The distinct beta-power modulation observed between these response conditions suggests involvement of amygdaloid oscillations in differentiating between motor inhibition and execution.

2.
J Neural Eng ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914073

RESUMEN

Introduction Can we decode movement execution and inhibition from hippocampal oscillations during arm-reaching tasks? Traditionally associated with memory encoding, spatial navigation, and motor sequence consolidation, the hippocampus has come under scrutiny for its potential role in movement processing. Stereotactic electroencephalography (SEEG) has provided a unique opportunity to study the neurophysiology of the human hippocampus during motor tasks. Objective In this study, we assess the accuracy of discriminant functions, in combination with principal component analysis (PCA), in classifying between "Go" and "No-go" trials in a Go/No-go arm-reaching task. Our approach centers on capturing the modulation of beta-band (13-30 Hz) power from multiple SEEG contacts in the hippocampus and minimizing the dimensional complexity of channels and frequency bins. Methods This study utilizes SEEG data from the human hippocampus of 10 participants diagnosed with epilepsy. Spectral power was computed during a "center-out" Go/No-go arm-reaching task, where participants reached or withheld their hand based on a colored cue. PCA was used to reduce data dimension and isolate the highest-variance components within the beta band. The Silhouette score was employed to measure the quality of clustering between "Go" and "No-go" trials. The accuracy of five different discriminant functions was evaluated using cross-validation. Results The Diagonal-Quadratic model performed best of the 5 classification models, exhibiting the lowest error rate in all participants (median: 9.91%, average: 14.67%). PCA showed that the first two principal components collectively accounted for 54.83% of the total variance explained on average across all participants, ranging from 36.92% to 81.25% among participants. Conclusion This study shows that PCA paired with a Diagonal-Quadratic model can be an effective method for classifying between Go/No-go trials from beta-band power in the hippocampus during arm-reaching responses. This emphasizes the significance of hippocampal beta-power modulation in motor control, unveiling its potential implications for brain-computer interface (BCI) applications.

3.
Neurosci Res ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582242

RESUMEN

The Stroop Task is a well-known neuropsychological task developed to investigate conflict processing in the human brain. Our group has utilized direct intracranial neural recordings in various brain regions during performance of a modified color-word Stroop Task to gain a mechanistic understanding of non-emotional human conflict processing. The purpose of this review article is to: 1) synthesize our own studies into a model of human conflict processing, 2) review the current literature on the Stroop Task and other conflict tasks to put our research in context, and 3) describe how these studies define a network in conflict processing. The figures presented are reprinted from our prior publications and key publications referenced in the manuscript. We summarize all studies to date that employ invasive intracranial recordings in humans during performance of conflict-inducing tasks. For our own studies, we analyzed local field potentials (LFPs) from patients with implanted stereotactic electroencephalography (SEEG) electrodes, and we observed intracortical oscillation patterns as well as intercortical temporal relationships in the hippocampus, amygdala, and orbitofrontal cortex (OFC) during the cue-processing phase of a modified Stroop Task. Our findings suggest that non-emotional human conflict processing involves modulation across multiple frequency bands within and between brain structures.

4.
Neurosci Res ; 204: 1-13, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38278220

RESUMEN

Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Somatosensorial , Humanos , Corteza Somatosensorial/fisiología , Animales , Mapeo Encefálico/métodos
5.
Turk Neurosurg ; 34(1): 128-134, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282591

RESUMEN

AIM: To investigate the relationship between planned drill approach angle and angular deviation of the stereotactically placed intracranial electrode tips. MATERIAL AND METHODS: Stereotactic electrode implantation was performed in 13 patients with drug resistant epilepsy. A total of 136 electrodes were included in our analysis. Stereotactic targets were planned on pre-operative magnetic resonance imaging (MRI) scans and implantation was carried out using a Cosman-Roberts-Wells stereotactic frame with the Ad-Tech drill guide and electrodes. Post implant electrode angles in the axial, coronal, and sagittal planes were determined from post-operative computerized tomography (CT) scans and compared with planned angles using Bland-Altman plots and linear regression. RESULTS: Qualitative assessment of correlation plots between planned and actual angles demonstrated a linear relationship for axial, coronal, and sagittal planes, with no overt angular deflection for any magnitude of the planned angle. CONCLUSION: The accuracy of CRW frame-based electrode placement using the Ad-Tech drill guide and electrodes is not significantly affected by the magnitude of the planning angle. Based on our results, oblique electrode insertion is a safe and accurate procedure.


Asunto(s)
Epilepsia Refractaria , Técnicas Estereotáxicas , Humanos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Imagenología Tridimensional , Electrodos Implantados , Imagen por Resonancia Magnética
6.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059590

RESUMEN

Most vertebrate species undergo tooth replacement throughout adult life. This process is marked by the shedding of existing teeth and the regeneration of tooth organs. However, little is known about the genetic circuitry regulating tooth replacement. Here, we tested whether fish orthologs of genes known to regulate mammalian hair regeneration have effects on tooth replacement. Using two fish species that demonstrate distinct modes of tooth regeneration, threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), we found that transgenic overexpression of four different genes changed tooth replacement rates in the direction predicted by a hair regeneration model: Wnt10a and Grem2a increased tooth replacement rate, whereas Bmp6 and Dkk2 strongly inhibited tooth formation. Thus, similar to known roles in hair regeneration, Wnt and BMP signals promote and inhibit regeneration, respectively. Regulation of total tooth number was separable from regulation of replacement rates. RNA sequencing of stickleback dental tissue showed that Bmp6 overexpression resulted in an upregulation of Wnt inhibitors. Together, these data support a model in which different epithelial organs, such as teeth and hair, share genetic circuitry driving organ regeneration.


Asunto(s)
Smegmamorpha , Diente , Animales , Pez Cebra/genética , Odontogénesis/genética , Animales Modificados Genéticamente , Smegmamorpha/genética , Mamíferos
7.
Artículo en Inglés | MEDLINE | ID: mdl-37962213

RESUMEN

BACKGROUND: The use of anticoagulation therapy (ACT) in trauma patients during the post-injury period presents a challenge given the increased risk of hemorrhage. Guidelines regarding whether and when to initiate ACT are lacking, and as a result, practice patterns vary widely. The purpose of this study is to describe the incidence of hemorrhagic complications in patients who received ACT during their hospitalization, identify risk factors, and characterize the required interventions. METHODS: In this retrospective cohort study, all trauma admissions at two Level 1 trauma centers between January 2015 and December 2020 were reviewed. Patients with pre-existing ACT use or those who developed a new indication for ACT were included for analysis. Demographic and outcome data were collected for those who received ACT during their admission. Comparisons were then made between the complications and no complications groups. A subgroup analysis was performed for all patients started on ACT within 14 days of injury. RESULTS: A total of 812 patients were identified as having an indication for ACT, and 442 patients received ACT during the post-injury period. The overall incidence of hemorrhagic complications was 12.7%. Of those who sustained hemorrhagic complications, 18 required procedural intervention. On regression analysis, male sex, severe injuries, and the need for hemorrhage control surgery on arrival were all found to be associated with hemorrhagic complications after the initiation of ACT. Waiting 7-14 days from the time of injury to initiate ACT reduced the odds of complications by 46% and 71%, respectively. CONCLUSIONS: The use of ACT in trauma during the post-injury period is not without risk. Waiting 7-14 days post-injury might greatly reduce the risk of hemorrhagic complications. STUDY TYPE/LEVEL OF EVIDENCE: Therapeutic/care management study: Level IV.

8.
Clin Neurophysiol ; 152: 93-111, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37208270

RESUMEN

Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/efectos adversos , Electrodos , Neurofisiología
9.
J Neural Eng ; 19(4)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35803209

RESUMEN

Objective.This study aimed to characterize hippocampal neural signatures of uncertainty by measuring beta band power in the period prior to movement cue.Approach. Participants with epilepsy were implanted with hippocampal depth electrodes for stereo electroencephalographic (SEEG) monitoring. Hippocampal beta (13-30 Hz) power changes have been observed during motor tasks such as the direct reach (DR) and Go/No-Go (GNG) tasks. The primary difference between the tasks is the presence of uncertainty about whether movement should be executed. Previous research on cortical responses to uncertainty has found that baseline beta power changes with uncertainty. SEEG data were sampled throughout phases of the DR and GNG tasks. Beta-band power during the fixation phase was compared between the DR and GNG task using a Wilcoxon rank sum test. This unpaired test was also used to analyze response times from cue to task completion between tasks.Main results.Eight patients who performed both reaching tasks were analyzed in this study. Movement response times in the GNG task were on average 210 milliseconds slower than in the DR task. All patients exhibited a significantly increased response latency in the GNG task compared to the DR task (Wilcoxon rank-sum p-value < 0.001). Six out of eight patients demonstrated statistically significant differences in beta power in single hippocampal contacts between the fixation phases of the GNG and DR tasks. At the group level, baseline beta power was significantly lower in the GNG task than in the DR task (Wilcoxon rank-sum p-value < 0.001).Significance. This novel study found that, in the presence of task uncertainty, baseline beta power in the hippocampus is lower than in its absence. This finding implicates movement uncertainty as an important factor in baseline hippocampal beta power during movement preparation.


Asunto(s)
Electroencefalografía , Movimiento , Hipocampo , Humanos , Movimiento/fisiología , Tiempo de Reacción/fisiología , Incertidumbre
10.
JAMA Netw Open ; 5(3): e223177, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35311962

RESUMEN

Importance: Surgical data scientists lack video data sets that depict adverse events, which may affect model generalizability and introduce bias. Hemorrhage may be particularly challenging for computer vision-based models because blood obscures the scene. Objective: To assess the utility of the Simulated Outcomes Following Carotid Artery Laceration (SOCAL)-a publicly available surgical video data set of hemorrhage complication management with instrument annotations and task outcomes-to provide benchmarks for surgical data science techniques, including computer vision instrument detection, instrument use metrics and outcome associations, and validation of a SOCAL-trained neural network using real operative video. Design, Setting, and Participants: For this quailty improvement study, a total of 75 surgeons with 1 to 30 years' experience (mean, 7 years) were filmed from January 1, 2017, to December 31, 2020, managing catastrophic surgical hemorrhage in a high-fidelity cadaveric training exercise at nationwide training courses. Videos were annotated from January 1 to June 30, 2021. Interventions: Surgeons received expert coaching between 2 trials. Main Outcomes and Measures: Hemostasis within 5 minutes (task success, dichotomous), time to hemostasis (in seconds), and blood loss (in milliliters) were recorded. Deep neural networks (DNNs) were trained to detect surgical instruments in view. Model performance was measured using mean average precision (mAP), sensitivity, and positive predictive value. Results: SOCAL contains 31 443 frames with 65 071 surgical instrument annotations from 147 trials with associated surgeon demographic characteristics, time to hemostasis, and recorded blood loss for each trial. Computer vision-based instrument detection methods using DNNs trained on SOCAL achieved a mAP of 0.67 overall and 0.91 for the most common surgical instrument (suction). Hemorrhage control challenges standard object detectors: detection of some surgical instruments remained poor (mAP, 0.25). On real intraoperative video, the model achieved a sensitivity of 0.77 and a positive predictive value of 0.96. Instrument use metrics derived from the SOCAL video were significantly associated with performance (blood loss). Conclusions and Relevance: Hemorrhage control is a high-stakes adverse event that poses unique challenges for video analysis, but no data sets of hemorrhage control exist. The use of SOCAL, the first data set to depict hemorrhage control, allows the benchmarking of data science applications, including object detection, performance metric development, and identification of metrics associated with outcomes. In the future, SOCAL may be used to build and validate surgical data science models.


Asunto(s)
Laceraciones , Cirujanos , Arterias Carótidas , Humanos , Laceraciones/cirugía , Aprendizaje Automático , Redes Neurales de la Computación
11.
J Neural Eng ; 19(1)2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35086075

RESUMEN

Objective. The human orbitofrontal cortex (OFC) is involved in automatic response inhibition and conflict processing, but the mechanism of frequency-specific power changes that control these functions is unknown. Theta and gamma activity have been independently observed in the OFC during conflict processing, while theta-gamma interactions in other brain areas have been noted primarily in studies of memory. Within the OFC, it is possible that theta-gamma phase amplitude coupling (PAC) drives conflict processing. This study aims to characterize the coupled relationship between theta and gamma frequency bands in the OFC during conflict processing using a modified Stroop task.Approach. Eight epilepsy patients implanted with OFC stereotactic electroencephalography electrodes participated in a color-word modified Stroop task. PAC between theta phase and gamma amplitude was assessed to determine the timing and magnitude of neural oscillatory changes. Group analysis was conducted using a non-parametric cluster-permutationt-test on coherence values.Main results.Theta-low gamma (LG) PAC significantly increased in five out of eight patients during successful trials of the incongruent condition compared with the congruent condition. Significant increases in theta-LG PAC were most prominent during cue processing 200-800 ms after cue presentation. On group analysis, trial-averaged mean theta-LG PAC was statistically significantly greater in the incongruent condition compared to the congruent condition (p< 0.001, Cohen'sd= 0.51).Significance.For the first time, we report that OFC theta phase and LG amplitude coupling increases during conflict resolution. Given the delayed onset after cue presentation, OFC theta-LG PAC may contribute to conflict processing after conflict detection and before motor response. This explanation follows the hypothesis that global theta waves modulate local gamma signals. Understanding this relationship within the OFC will help further elucidate the neural mechanisms of human conflict resolution.


Asunto(s)
Conflicto Psicológico , Corteza Prefrontal , Electroencefalografía , Epilepsia , Humanos , Corteza Prefrontal/fisiología , Test de Stroop
12.
J Neurosurg ; : 1-10, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34972086

RESUMEN

OBJECTIVE: Experts can assess surgeon skill using surgical video, but a limited number of expert surgeons are available. Automated performance metrics (APMs) are a promising alternative but have not been created from operative videos in neurosurgery to date. The authors aimed to evaluate whether video-based APMs can predict task success and blood loss during endonasal endoscopic surgery in a validated cadaveric simulator of vascular injury of the internal carotid artery. METHODS: Videos of cadaveric simulation trials by 73 neurosurgeons and otorhinolaryngologists were analyzed and manually annotated with bounding boxes to identify the surgical instruments in the frame. APMs in five domains were defined-instrument usage, time-to-phase, instrument disappearance, instrument movement, and instrument interactions-on the basis of expert analysis and task-specific surgical progressions. Bounding-box data of instrument position were then used to generate APMs for each trial. Multivariate linear regression was used to test for the associations between APMs and blood loss and task success (hemorrhage control in less than 5 minutes). The APMs of 93 successful trials were compared with the APMs of 49 unsuccessful trials. RESULTS: In total, 29,151 frames of surgical video were annotated. Successful simulation trials had superior APMs in each domain, including proportionately more time spent with the key instruments in view (p < 0.001) and less time without hemorrhage control (p = 0.002). APMs in all domains improved in subsequent trials after the participants received personalized expert instruction. Attending surgeons had superior instrument usage, time-to-phase, and instrument disappearance metrics compared with resident surgeons (p < 0.01). APMs predicted surgeon performance better than surgeon training level or prior experience. A regression model that included APMs predicted blood loss with an R2 value of 0.87 (p < 0.001). CONCLUSIONS: Video-based APMs were superior predictors of simulation trial success and blood loss than surgeon characteristics such as case volume and attending status. Surgeon educators can use APMs to assess competency, quantify performance, and provide actionable, structured feedback in order to improve patient outcomes. Validation of APMs provides a benchmark for further development of fully automated video assessment pipelines that utilize machine learning and computer vision.

13.
Evodevo ; 12(1): 4, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766133

RESUMEN

BACKGROUND: Vertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a 'lamina-less' tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues. RESULTS: In the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1, and pitx2), while active Wnt signaling and Lef1 expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally express Lef1 and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration. CONCLUSIONS: We propose that the expression domains described here delineate a highly conserved "successional dental epithelium" (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.

14.
J Exp Biol ; 220(Pt 15): 2787-2797, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28515238

RESUMEN

Cleaning, a dietary strategy in which mucus or ectoparasites are removed and consumed off other taxa, is performed facultatively or obligately in a variety of species. We explored whether species in the Labridae (wrasses, parrotfishes) of varying ecological specialization employ similar mechanisms of prey capture. In investigating feeding on attached prey among juveniles of 19 species of wrasses, we found that patterns of biting in wrasses are influenced by the interaction between the maxilla and a feature of the premaxilla which we term the maxillary crest. Premaxillary motion during biting appears to be guided by the relative size of the crest. In many cases, this results in a 'premaxillary bite' wherein the premaxillae rapidly move anteroventrally to meet the lower jaws and deliver a protruded bite. Cleaners in the Labrichthyini tribe, however, exhibited reduced or absent maxillary crests. This coincided with a distinct kinematic pattern of prey capture in these labrichthyine cleaners, coupled with some of the fastest and lowest-excursion jaw movements. Although evidence of kinematic specialization can be found in these labrichthyines (most notably in the obligate cleaners in Labroides), we found that facultative cleaners from other lineages similarly evolved reductions in excursions and timing. Convergence in feeding kinematics is thus apparent despite varying degrees of cleaning specialization and underlying morphological features.


Asunto(s)
Fuerza de la Mordida , Maxilares/anatomía & histología , Perciformes/anatomía & histología , Perciformes/fisiología , Conducta Predatoria , Factores de Edad , Animales , Fenómenos Biomecánicos , Perciformes/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...