Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; 371(6524)2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33243850

RESUMEN

Factor-dependent transcription termination mechanisms are poorly understood. We determined a series of cryo-electron microscopy structures portraying the hexameric adenosine triphosphatase (ATPase) ρ on a pathway to terminating NusA/NusG-modified elongation complexes. An open ρ ring contacts NusA, NusG, and multiple regions of RNA polymerase, trapping and locally unwinding proximal upstream DNA. NusA wedges into the ρ ring, initially sequestering RNA. Upon deflection of distal upstream DNA over the RNA polymerase zinc-binding domain, NusA rotates underneath one capping ρ subunit, which subsequently captures RNA. After detachment of NusG and clamp opening, RNA polymerase loses its grip on the RNA:DNA hybrid and is inactivated. Our structural and functional analyses suggest that ρ, and other termination factors across life, may use analogous strategies to allosterically trap transcription complexes in a moribund state.


Asunto(s)
Adenosina Trifosfatasas/química , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/genética , Factor Rho/química , Elongación de la Transcripción Genética , Microscopía por Crioelectrón , Proteínas de Escherichia coli/química , Complejos Multiproteicos/química , Factores de Elongación de Péptidos/química , Conformación Proteica , Transporte de Proteínas , Factores de Transcripción/química , Factores de Elongación Transcripcional/química , Dedos de Zinc
2.
Cell ; 174(5): 1188-1199.e14, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30057118

RESUMEN

In stationary-phase Escherichia coli, Dps (DNA-binding protein from starved cells) is the most abundant protein component of the nucleoid. Dps compacts DNA into a dense complex and protects it from damage. Dps has also been proposed to act as a global regulator of transcription. Here, we directly examine the impact of Dps-induced compaction of DNA on the activity of RNA polymerase (RNAP). Strikingly, deleting the dps gene decompacted the nucleoid but did not significantly alter the transcriptome and only mildly altered the proteome during stationary phase. Complementary in vitro assays demonstrated that Dps blocks restriction endonucleases but not RNAP from binding DNA. Single-molecule assays demonstrated that Dps dynamically condenses DNA around elongating RNAP without impeding its progress. We conclude that Dps forms a dynamic structure that excludes some DNA-binding proteins yet allows RNAP free access to the buried genes, a behavior characteristic of phase-separated organelles.


Asunto(s)
ADN Bacteriano , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Enzimas de Restricción del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Holoenzimas/metabolismo , Microscopía Fluorescente , Poliestirenos/química , Proteoma , Análisis de Secuencia de ARN , Estrés Mecánico , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA