Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bone ; 186: 117167, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876270

RESUMEN

We evaluated the potential of sclerostin antibody (SclAb) therapy to enhance osseointegration of dental and orthopaedic implants in a mouse model (Brtl/+) mimicking moderate to severe Osteogenesis Imperfecta (OI). To address the challenges in achieving stable implant integration in compromised bone conditions, our aim was to determine the effectiveness of sclerostin antibody (SclAb) at improving bone-to-implant contact and implant fixation strength. Utilizing a combination of micro-computed tomography, mechanical push-in testing, immunohistochemistry, and Western blot analysis, we observed that SclAb treatment significantly enhances bone volume fraction (BV/TV) and bone-implant contact (BIC) in Brtl/+ mice, suggesting a normalization of bone structure toward WT levels. Despite variations in implant survival rates between the maxilla and tibia, SclAb treatment consistently improved implant stability and resistance to mechanical forces, highlighting its potential to overcome the inherent challenges of OI in dental and orthopaedic implant integration. These results suggest that SclAb could be a valuable therapeutic approach for enhancing implant success in compromised bone conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Anticuerpos , Colágeno Tipo I , Mutación , Oseointegración , Animales , Oseointegración/efectos de los fármacos , Ratones , Mutación/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Anticuerpos/farmacología , Microtomografía por Rayos X , Huesos/diagnóstico por imagen , Huesos/efectos de los fármacos , Huesos/patología , Péptidos y Proteínas de Señalización Intercelular , Implantes Dentales , Tibia/diagnóstico por imagen , Tibia/patología , Tibia/efectos de los fármacos
2.
JBMR Plus ; 8(1): ziad004, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38690127

RESUMEN

Craniofacial and dentoalveolar abnormalities are present in all types of osteogenesis imperfecta (OI). Mouse models of the disorder are critical to understand these abnormalities and underlying OI pathogenesis. Previous studies on severely affected OI mice report a broad spectrum of craniofacial phenotypes, exhibiting some similarities to the human disorder. The Brtl/+ and G610c/+ are moderately severe and mild-type IV OI, respectively. Little is known about the aging effects on the craniofacial bones of these models and their homology to human OI. This study aimed to analyze the Brtl/+ and G610c/+ craniofacial morphometries during aging to establish suitability for further OI craniofacial bone intervention studies. We performed morphological measurements on the micro-CT-scanned heads of 3-wk-old, 3-mo-old, and 6-mo-old female Brtl/+ and G610c/+ mice. We observed that Brtl/+ skulls are shorter in length than WT (P < .05), whereas G610c/+ skulls are similar in length to their WT counterparts. The Brtl/+ mice exhibit alveolar bone with a porotic-like appearance that is not observed in G610c/+. As they age, Brtl/+ mice show severe bone resorption in both the maxilla and mandible (P < .05). By contrast, G610c/+ mice experience mandibular resorption consistently across all ages, but maxillary resorption is only evident at 6 mo (P < .05). Western blot shows high osteoclastic activities in the Brtl/+ maxilla. Both models exhibit delayed pre-functional eruptions of the third molars (P < .05), which are similar to those observed in some bisphosphonate-treated OI subjects. Our study shows that the Brtl/+ and G610c/+ mice display clear features found in type IV OI patients; both show age-related changes in the craniofacial growth phenotype. Therefore, understanding the craniofacial features of these models and how they age will allow us to select the most accurate mouse model, mouse age, and bone structure for the specific craniofacial bone treatment of differing OI groups.

3.
Am J Pathol ; 188(11): 2464-2473, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30142335

RESUMEN

Heterotopic ossification (HO) occurs secondary to trauma, causing pain and functional limitations. Identification of the cells that contribute to HO is critical to the development of therapies. Given that innate immune cells and mesenchymal stem cells are known contributors to HO, we sought to define the contribution of these populations to HO and to identify what, if any, contribution circulating populations have to HO. A shared circulation was obtained using a parabiosis model, established between an enhanced green fluorescent protein-positive/luciferase+ donor and a same-strain nonreporter recipient mouse. The nonreporter mouse received Achilles tendon transection and dorsal burn injury to induce HO formation. Bioluminescence imaging and immunostaining were performed to define the circulatory contribution of immune and mesenchymal cell populations. Histologic analysis showed circulating cells present throughout each stage of the developing HO anlagen. Circulating cells were present at the injury site during the inflammatory phase and proliferative period, with diminished contribution in mature HO. Immunostaining demonstrated that most early circulatory cells were from the innate immune system; only a small population of mesenchymal cells were present in the HO. We demonstrate the time course of the participation of circulatory cells in trauma-induced HO and identify populations of circulating cells present in different stages of HO. These findings further elucidate the relative contribution of local and systemic cell populations to HO.


Asunto(s)
Quemaduras/complicaciones , Modelos Animales de Enfermedad , Inflamación/patología , Células Madre Mesenquimatosas/patología , Osificación Heterotópica/patología , Animales , Femenino , Inflamación/sangre , Inflamación/etiología , Ratones , Ratones Endogámicos C57BL , Osificación Heterotópica/sangre , Osificación Heterotópica/etiología , Osteogénesis , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 113(3): E338-47, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26721400

RESUMEN

Pathologic extraskeletal bone formation, or heterotopic ossification (HO), occurs following mechanical trauma, burns, orthopedic operations, and in patients with hyperactivating mutations of the type I bone morphogenetic protein receptor ACVR1 (Activin type 1 receptor). Extraskeletal bone forms through an endochondral process with a cartilage intermediary prompting the hypothesis that hypoxic signaling present during cartilage formation drives HO development and that HO precursor cells derive from a mesenchymal lineage as defined by Paired related homeobox 1 (Prx). Here we demonstrate that Hypoxia inducible factor-1α (Hif1α), a key mediator of cellular adaptation to hypoxia, is highly expressed and active in three separate mouse models: trauma-induced, genetic, and a hybrid model of genetic and trauma-induced HO. In each of these models, Hif1α expression coincides with the expression of master transcription factor of cartilage, Sox9 [(sex determining region Y)-box 9]. Pharmacologic inhibition of Hif1α using PX-478 or rapamycin significantly decreased or inhibited extraskeletal bone formation. Importantly, de novo soft-tissue HO was eliminated or significantly diminished in treated mice. Lineage-tracing mice demonstrate that cells forming HO belong to the Prx lineage. Burn/tenotomy performed in lineage-specific Hif1α knockout mice (Prx-Cre/Hif1α(fl:fl)) resulted in substantially decreased HO, and again lack of de novo soft-tissue HO. Genetic loss of Hif1α in mesenchymal cells marked by Prx-cre prevents the formation of the mesenchymal condensations as shown by routine histology and immunostaining for Sox9 and PDGFRα. Pharmacologic inhibition of Hif1α had a similar effect on mesenchymal condensation development. Our findings indicate that Hif1α represents a promising target to prevent and treat pathologic extraskeletal bone.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Osificación Heterotópica/genética , Osificación Heterotópica/prevención & control , Heridas y Lesiones/complicaciones , Receptores de Activinas Tipo I/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Quemaduras/complicaciones , Quemaduras/genética , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Modelos Animales de Enfermedad , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Integrasas/metabolismo , Mediciones Luminiscentes , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Noqueados , Modelos Biológicos , Compuestos de Mostaza/farmacología , Osificación Heterotópica/diagnóstico por imagen , Osificación Heterotópica/tratamiento farmacológico , Fenilpropionatos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Tendones/efectos de los fármacos , Tendones/patología , Tendones/cirugía , Tenotomía , Regulación hacia Arriba/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/patología , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...