Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(22): 12443-12458, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37930833

RESUMEN

The dNTPase activity of tetrameric SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) plays a critical role in cellular dNTP regulation. SAMHD1 also associates with stalled DNA replication forks, DNA repair foci, ssRNA and telomeres. The above functions require nucleic acid binding by SAMHD1, which may be modulated by its oligomeric state. Here we establish in cryo-EM and biochemical studies that the guanine-specific A1 activator site of each SAMHD1 monomer is used to target the enzyme to guanine nucleotides within single-stranded (ss) DNA and RNA. Remarkably, nucleic acid strands containing a single guanine base induce dimeric SAMHD1, while two or more guanines with ∼20 nucleotide spacing induce a tetrameric form. A cryo-EM structure of ssRNA-bound tetrameric SAMHD1 shows how ssRNA strands bridge two SAMHD1 dimers and stabilize the structure. This ssRNA-bound tetramer is inactive with respect to dNTPase and RNase activity.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , ARN , Guanina , Proteínas de Unión al GTP Monoméricas/genética , Nucleótidos/metabolismo , Polímeros/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo
2.
bioRxiv ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37398126

RESUMEN

The dNTPase activity of tetrameric SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) plays a critical role in cellular dNTP regulation. SAMHD1 also associates with stalled DNA replication forks, DNA repair foci, ssRNA, and telomeres. The above functions require nucleic acid binding by SAMHD1, which may be modulated by its oligomeric state. Here we establish that the guanine-specific A1 activator site of each SAMHD1 monomer is used to target the enzyme to guanine nucleotides within single-stranded (ss) DNA and RNA. Remarkably, nucleic acid strands containing a single guanine base induce dimeric SAMHD1, while two or more guanines with ~20 nucleotide spacing induce a tetrameric form. A cryo-EM structure of ssRNA-bound tetrameric SAMHD1 shows how ssRNA strands bridge two SAMHD1 dimers and stabilize the structure. This ssRNA-bound tetramer is inactive with respect to dNTPase and RNase activity.

3.
J Mol Biol ; 434(19): 167789, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35964676

RESUMEN

Regulation of pancreatic KATP channels involves orchestrated interactions of their subunits, Kir6.2 and SUR1, and ligands. Previously we reported KATP channel cryo-EM structures in the presence and absence of pharmacological inhibitors and ATP, focusing on the mechanisms by which inhibitors act as pharmacological chaperones of KATP channels (Martin et al., 2019). Here we analyzed the same cryo-EM datasets with a focus on channel conformational dynamics to elucidate structural correlates pertinent to ligand interactions and channel gating. We found pharmacological inhibitors and ATP enrich a channel conformation in which the Kir6.2 cytoplasmic domain is closely associated with the transmembrane domain, while depleting one where the Kir6.2 cytoplasmic domain is extended away into the cytoplasm. This conformational change remodels a network of intra- and inter-subunit interactions as well as the ATP and PIP2 binding pockets. The structures resolved key contacts between the distal N-terminus of Kir6.2 and SUR1's ABC module involving residues implicated in channel function and showed a SUR1 residue, K134, participates in PIP2 binding. Molecular dynamics simulations revealed two Kir6.2 residues, K39 and R54, that mediate both ATP and PIP2 binding, suggesting a mechanism for competitive gating by ATP and PIP2.


Asunto(s)
Canales KATP , Adenosina Trifosfato/metabolismo , Humanos , Canales KATP/química , Ligandos , Páncreas , Conformación Proteica
4.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34711681

RESUMEN

Vascular tone is dependent on smooth muscle KATP channels comprising pore-forming Kir6.1 and regulatory SUR2B subunits, in which mutations cause Cantú syndrome. Unique among KATP isoforms, they lack spontaneous activity and require Mg-nucleotides for activation. Structural mechanisms underlying these properties are unknown. Here, we determined cryogenic electron microscopy structures of vascular KATP channels bound to inhibitory ATP and glibenclamide, which differ informatively from similarly determined pancreatic KATP channel isoform (Kir6.2/SUR1). Unlike SUR1, SUR2B subunits adopt distinct rotational "propeller" and "quatrefoil" geometries surrounding their Kir6.1 core. The glutamate/aspartate-rich linker connecting the two halves of the SUR-ABC core is observed in a quatrefoil-like conformation. Molecular dynamics simulations reveal MgADP-dependent dynamic tripartite interactions between this linker, SUR2B, and Kir6.1. The structures captured implicate a progression of intermediate states between MgADP-free inactivated, and MgADP-bound activated conformations wherein the glutamate/aspartate-rich linker participates as mobile autoinhibitory domain, suggesting a conformational pathway toward KATP channel activation.


Asunto(s)
Adenosina Difosfato/metabolismo , Canales KATP/ultraestructura , Receptores de Sulfonilureas/ultraestructura , Adenosina Trifosfato/metabolismo , Cardiomegalia/metabolismo , Humanos , Hipertricosis/metabolismo , Canales KATP/genética , Canales KATP/metabolismo , Músculo Liso/metabolismo , Osteocondrodisplasias/metabolismo , Páncreas/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Relación Estructura-Actividad , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo
5.
Mol Cell Endocrinol ; 502: 110667, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31821855

RESUMEN

ATP-sensitive potassium (KATP) channels are uniquely evolved protein complexes that couple cell energy levels to cell excitability. They govern a wide range of physiological processes including hormone secretion, neuronal transmission, vascular dilation, and cardiac and neuronal preconditioning against ischemic injuries. In pancreatic ß-cells, KATP channels composed of Kir6.2 and SUR1, encoded by KCNJ11 and ABCC8, respectively, play a key role in coupling blood glucose concentration to insulin secretion. Mutations in ABCC8 or KCNJ11 that diminish channel function result in congenital hyperinsulinism. Many of these mutations principally hamper channel biogenesis and hence trafficking to the cell surface. Several small molecules have been shown to correct channel biogenesis and trafficking defects. Here, we review studies aimed at understanding how mutations impair channel biogenesis and trafficking and how pharmacological ligands overcome channel trafficking defects, particularly highlighting recent cryo-EM structural studies which have shed light on the mechanisms of channel assembly and pharmacological chaperones.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Canales KATP/antagonistas & inhibidores , Canales KATP/química , Animales , Glucemia/metabolismo , Carbamazepina/química , Carbamazepina/farmacología , Microscopía por Crioelectrón , Diseño de Fármacos , Humanos , Insulina/metabolismo , Canales KATP/genética , Ligandos , Modelos Moleculares , Mutación , Conformación Proteica
6.
PLoS Pathog ; 15(12): e1008175, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31809525

RESUMEN

A key step in replication of human cytomegalovirus (HCMV) in the host cell is the generation and packaging of unit-length genomes into preformed capsids. The enzymes involved in this process are the terminases. The HCMV terminase complex consists of two terminase subunits, the ATPase pUL56 and the nuclease pUL89. A potential third component pUL51 has been proposed. Even though the terminase subunit pUL89 has been shown to be essential for DNA packaging and interaction with pUL56, it is not known how pUL89 mechanistically achieves sequence-specific DNA binding and nicking. To identify essential domains and invariant amino acids vis-a-vis nuclease activity and DNA binding, alanine substitutions of predicted motifs were analyzed. The analyses indicated that aspartate 463 is an invariant amino acid for the nuclease activity, while argine 544 is an invariant aa for DNA binding. Structural analysis of recombinant protein using electron microscopy in conjunction with single particle analysis revealed a curvilinear monomer with two distinct domains connected by a thinner hinge-like region that agrees well with the predicted structure. These results allow us to model how the terminase subunit pUL89's structure may mediate its function.


Asunto(s)
Citomegalovirus/química , Empaquetamiento del ADN/fisiología , Proteínas Virales/química , Citomegalovirus/genética , Conformación Proteica , Relación Estructura-Actividad , Proteínas Virales/genética
7.
Elife ; 82019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31343405

RESUMEN

ATP-sensitive potassium (KATP) channels composed of a pore-forming Kir6.2 potassium channel and a regulatory ABC transporter sulfonylurea receptor 1 (SUR1) regulate insulin secretion in pancreatic ß-cells to maintain glucose homeostasis. Mutations that impair channel folding or assembly prevent cell surface expression and cause congenital hyperinsulinism. Structurally diverse KATP inhibitors are known to act as pharmacochaperones to correct mutant channel expression, but the mechanism is unknown. Here, we compare cryoEM structures of a mammalian KATP channel bound to pharmacochaperones glibenclamide, repaglinide, and carbamazepine. We found all three drugs bind within a common pocket in SUR1. Further, we found the N-terminus of Kir6.2 inserted within the central cavity of the SUR1 ABC core, adjacent the drug binding pocket. The findings reveal a common mechanism by which diverse compounds stabilize the Kir6.2 N-terminus within SUR1's ABC core, allowing it to act as a firm 'handle' for the assembly of metastable mutant SUR1-Kir6.2 complexes.


Asunto(s)
Microscopía por Crioelectrón , Canales KATP/metabolismo , Canales KATP/ultraestructura , Mamíferos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Animales , Sitios de Unión , Carbamatos/química , Carbamatos/metabolismo , Línea Celular , Cricetinae , Cisteína/genética , Gliburida/química , Gliburida/metabolismo , Humanos , Canales KATP/química , Modelos Moleculares , Mutación/genética , Preparaciones Farmacéuticas/química , Piperidinas/química , Piperidinas/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Unión Proteica , Ratas
8.
J Biol Chem ; 293(27): 10692-10706, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29769312

RESUMEN

Chloroplasts host photosynthesis and fulfill other metabolic functions that are essential to plant life. They have to divide by binary fission to maintain their numbers throughout cycles of cell division. Chloroplast division is achieved by a complex ring-shaped division machinery located on both the inner (stromal) and the outer (cytosolic) side of the chloroplast envelope. The inner division ring (termed the Z ring) is formed by the assembly of tubulin-like FtsZ1 and FtsZ2 proteins. ARC6 is a key chloroplast division protein that interacts with the Z ring. ARC6 spans the inner envelope membrane, is known to stabilize or maintain the Z ring, and anchors the Z ring to the inner membrane through interaction with FtsZ2. The underlying mechanism of Z ring stabilization is not well-understood. Here, biochemical and structural characterization of ARC6 was conducted using light scattering, sedimentation, and light and transmission EM. The recombinant protein was purified as a dimer. The results indicated that a truncated form of ARC6 (tARC6), representing the stromal portion of ARC6, affects FtsZ2 assembly without forming higher-order structures and exerts its effect via FtsZ2 dynamics. tARC6 prevented GDP-induced FtsZ2 disassembly and caused a significant net increase in FtsZ2 assembly when GDP was present. Single particle analysis and 3D reconstruction were performed to elucidate the structural basis of ARC6 activity. Together, the data reveal that a dimeric form of tARC6 binds to FtsZ2 filaments and does not increase FtsZ polymerization rates but rather inhibits GDP-associated FtsZ2 disassembly.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Guanosina Difosfato/metabolismo , Proteínas de Arabidopsis/genética , Cristalografía por Rayos X , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Biochem J ; 475(1): 99-115, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29138260

RESUMEN

Chloroplasts evolved from cyanobacterial endosymbiotic ancestors and their division is a complex process initiated by the assembly of cytoskeletal FtsZ (Filamentous temperature sensitive Z) proteins into a ring structure at the division site (Z-ring). The cyanobacterial Z-ring positioning system (MinCDE proteins) is also conserved in chloroplasts, except that MinC was lost and replaced by the eukaryotic ARC3 (accumulation and replication of chloroplasts). Both MinC and ARC3 act as negative regulators of FtsZ assembly, but ARC3 bears little sequence similarity with MinC. Here, light scattering assays, co-sedimentation, GTPase assay and transmission electron microscopy in conjunction with single-particle analysis have been used to elucidate the structure of ARC3 and its effect on its main target in chloroplast division, FtsZ2. Analysis of FtsZ2 in vitro assembly reactions in the presence and absence of GMPCPP showed that ARC3 promotes FtsZ2 debundling and disassembly of existing filaments in a concentration-dependent manner and requires GTP hydrolysis. Three-dimensional reconstruction of ARC3 revealed an almost circular molecule in which the FtsZ-binding N-terminus and the C-terminal PARC6 (paralog of ARC6)-binding MORN (Membrane Occupation and Recognition Nexus) domain are in close proximity and suggest a model for PARC6-enabled binding of ARC3 to FtsZ2. The latter is corroborated by in vivo data.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Guanosina Trifosfato/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular , Cloroplastos/efectos de los fármacos , Cloroplastos/genética , Cloroplastos/ultraestructura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/farmacología , Cinética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Elife ; 62017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28463111

RESUMEN

RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5' products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/genética , Exorribonucleasas/metabolismo , Silenciador del Gen , Estabilidad del ARN , Complejo Silenciador Inducido por ARN/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-22949200

RESUMEN

AIM2 (absent in melanoma 2) is an innate immune receptor for cytosolic double-stranded DNA (dsDNA). The engagement of dsDNA by AIM2 activates the AIM2 inflammasome, resulting in the cleavage of pro-interleukin-1ß by caspase-1. The DNA-binding HIN-200 domain of mouse AIM2 bound to a 15 bp dsDNA and to an 18 bp dsDNA was purified and crystallized. The AIM2 HIN-200 domain in complex with the 15 bp DNA crystallized in the cubic space group I23 or I2(1)3, with unit-cell parameter a = 235.60 Å. The complex of the AIM2 HIN-200 domain and the 18 bp DNA crystallized in a similar unit cell. Diffraction data for the two complexes were collected to about 4.0 Å resolution. Mutagenesis and DNA-binding studies suggest that mouse AIM2 uses a similar surface to human AIM2 to recognize DNA.


Asunto(s)
ADN/química , Proteínas Nucleares/química , Animales , Cristalografía por Rayos X , ADN/metabolismo , Proteínas de Unión al ADN , Ratones , Proteínas Nucleares/metabolismo , Unión Proteica
13.
Biochem Biophys Res Commun ; 406(3): 459-63, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21333632

RESUMEN

Folate co-enzymes play a pivotal role in one-carbon transfer cellular processes. Many eukaryotes encode the tri-functional tetrahydrofolate dehydrogenase/cyclohydrolase/synthetase (deh/cyc/syn) enzyme, which consists of a N-terminal bifunctional domain (deh/cyc) and a C-terminal monofunctional domain (syn). Here, we report the first analogous archeal enzyme structures, for the bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase from Thermoplasma acidophilum (TaMTHFDC) as the native protein and also as its NADP complex. The TaMTHFDC structure is a dimer with a polar interface, as well as a NADP binding site that shows minor conformational change. The orientations of the residues in the NADP binding site do not change on ligand binding, incorporating three water molecules which are hydrogen bonded with phosphate groups of NADP in the structure of the complex. Our structural information will contribute to an improved understanding of the basis of THF and one-carbon metabolism.


Asunto(s)
Meteniltetrahidrofolato Ciclohidrolasa/química , Thermoplasma/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalización , Cristalografía por Rayos X , Meteniltetrahidrofolato Ciclohidrolasa/genética , Datos de Secuencia Molecular , NADP/química , Multimerización de Proteína , Estructura Secundaria de Proteína , Tetrahidrofolatos/química
14.
Biochem Biophys Res Commun ; 391(1): 1131-5, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20005197

RESUMEN

Beta-glucosidase enzymes (EC 3.2.1-3.2.3) hydrolyze sugars and are implicated in a wide spectrum of biological processes. Recently, we reported that beta-glucosidase has varied kinetic parameters for the natural and synthetic substrates [K.H Nam, S.J. Kim, M.Y. Kim, J.H. Kim, T.S. Yeo, C.M. Lee, H.K Jun, K.Y. Hwang. Crystal structure of engineered beta-glucosidase from a soil metagenome, Proteins 73 (2008) 788-793]. However, an understanding of the kinetic values of beta-glucosidase has not yet enabled the elucidation of its molecular function. Here, we report the X-ray crystal structure of beta-glucosidase with a glucose and cellobiose fragment from uncultured soil metagenome. From the various crystals, we obtained the pre-reaction (native), intermediate (disaccharide cleavage) and post-reaction (glucose binding) states of the active site pocket. These structures provide snapshots of the catalytic processing of beta-glucosidase. In addition, the intermediate state of the crystal structure provides insight into the substrate specificity of beta-glucosidase. These structural studies will facilitate elucidation of the architectural mechanism responsible for the substrate recognition of beta-glucosidase.


Asunto(s)
beta-Glucosidasa/química , Catálisis , Dominio Catalítico , Celobiosa/química , Cristalografía por Rayos X , Glucosa/química , Metagenoma , Conformación Proteica , Microbiología del Suelo , Especificidad por Sustrato , beta-Glucosidasa/genética
15.
Biochim Biophys Acta ; 1794(7): 1030-40, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19328247

RESUMEN

Alanine racemase (AlaR) is a bacterial enzyme that belongs to the fold-type III group of pyridoxal 5'-phosphate (PLP)-dependent enzymes. AlaR catalyzes the interconversion between L- and D-alanine, which is important for peptidoglycan biosynthesis. This enzyme is common in prokaryotes, but absent in eukaryotes, which makes it an attractive target for the design of new antibacterial drugs. Here, we report the crystal structures of both the apoenzyme and the d-cycloserine (DCS) complex of AlaR from the pathogenic bacterium Enterococcus faecalis v583, at a resolution of 2.5 A. DCS is a suicide inhibitor of AlaR and, as such, serves as an antimicrobial agent and has been used to treat tuberculosis and urinary tract infection-related diseases, and makes several hydrogen bonds with the conserved active site residues, Tyr44 and Ser207, respectively. The apoenzyme crystal structure of AlaR consists of three monomers in the asymmetric unit, including a polyethylene glycol molecule in the dimer interface that surrounds one of the His 293 residues and also sits close to one side of the His 293 residue in the opposite monomer. Our results provide structural insights into AlaR that may be used for the development of new antibiotics targeting the alanine racemase in pathogenic bacteria.


Asunto(s)
Alanina Racemasa/química , Enterococcus faecalis/enzimología , Alanina Racemasa/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
16.
J Microbiol Biotechnol ; 18(2): 283-6, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18309272

RESUMEN

The methylenetetrahydrofolate dehydrogenase/ cyclohydrolase (MTHFDC) from the thermoacidophilic archaeon Thermoplasma acidophilum is a 30.6 kDa molecular-mass enzyme that sequentially catalyzes the conversion of formyltetrahydrofolate to methylenetetrahydrofolate, with a preference for NADP as a cofactor, rather than NAD. In order to elucidate the functional and structural features of MTHFDC from archaeons at a molecular level, it was overexpressed in Escherichia coli and crystallized in the presence of its cofactor, NADP, at 295 K using polyethylene glycol (PEG) 4000 as a precipitant. The crystal is a member of the monoclinic space group P21, with the following unit cell parameters: a=66.333 A, b=52.868 A, c=86.099 A, and beta= 97.570o, and diffracts to a resolution of at least 2.40 A at the synchrotron. Assuming a dimer in the crystallographic asymmetric unit, the calculated Matthews parameter (VM) was 2.44 A3/Da and the solvent content was 49.7%.


Asunto(s)
Aminohidrolasas/química , Proteínas Arqueales/química , Metilenotetrahidrofolato Deshidrogenasa (NADP)/química , Complejos Multienzimáticos/química , Thermoplasma/enzimología , Aminohidrolasas/metabolismo , Proteínas Arqueales/metabolismo , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Complejos Multienzimáticos/metabolismo , Thermoplasma/química
17.
J Microbiol Biotechnol ; 18(1): 55-8, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18239416

RESUMEN

Alanine racemase, a bacterial enzyme belonging to the fold-type III group of pyridoxal 5'-phosphate (PLP)-dependent enzymes, has been shown to catalyze the interconversion between L- and D-alanine. The alanine racemase from the pathogenic bacterium Enterococcus faecalis v583 has been overexpressed in E. coli and was shown to crystallize an enzyme at 295 K, using polyethylene glycol (PEG) 8000 as a precipitant. X-ray diffraction data to 2.5 A has been collected using synchrotron radiation. The crystal is a member of the orthorhombic space group, C222(1), with unit cell parameter of a=94.634, b=156.516, c=147.878 A, and alpha=beta;=gamma=90 degrees. Two or three monomers are likely to be present in the asymmetric unit, with a corresponding Vm of 3.38 A3 Da(-1) and 2.26 A Da(-1) and a solvent content of 63.7% and 45.5%, respectively.


Asunto(s)
Alanina Racemasa , Enterococcus faecalis/enzimología , Alanina Racemasa/química , Alanina Racemasa/genética , Alanina Racemasa/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Biotecnología , Cristalización , Cristalografía por Rayos X , Enterococcus faecalis/genética , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...