Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Magn Reson Imaging ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703143

RESUMEN

Breast cancer is one of the most prevalent forms of cancer affecting women worldwide. Hypoxia, a condition characterized by insufficient oxygen supply in tumor tissues, is closely associated with tumor aggressiveness, resistance to therapy, and poor clinical outcomes. Accurate assessment of tumor hypoxia can guide treatment decisions, predict therapy response, and contribute to the development of targeted therapeutic interventions. Over the years, functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS) techniques have emerged as promising noninvasive imaging options for evaluating hypoxia in cancer. Such techniques include blood oxygen level-dependent (BOLD) MRI, oxygen-enhanced MRI (OE) MRI, chemical exchange saturation transfer (CEST) MRI, and proton MRS (1H-MRS). These may help overcome the limitations of the routinely used dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI) techniques, contributing to better diagnosis and understanding of the biological features of breast cancer. This review aims to provide a comprehensive overview of the emerging functional MRI and MRS techniques for assessing hypoxia in breast cancer, along with their evolving clinical applications. The integration of these techniques in clinical practice holds promising implications for breast cancer management. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.

2.
J Magn Reson Imaging ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581127

RESUMEN

In breast imaging, there is an unrelenting increase in the demand for breast imaging services, partly explained by continuous expanding imaging indications in breast diagnosis and treatment. As the human workforce providing these services is not growing at the same rate, the implementation of artificial intelligence (AI) in breast imaging has gained significant momentum to maximize workflow efficiency and increase productivity while concurrently improving diagnostic accuracy and patient outcomes. Thus far, the implementation of AI in breast imaging is at the most advanced stage with mammography and digital breast tomosynthesis techniques, followed by ultrasound, whereas the implementation of AI in breast magnetic resonance imaging (MRI) is not moving along as rapidly due to the complexity of MRI examinations and fewer available dataset. Nevertheless, there is persisting interest in AI-enhanced breast MRI applications, even as the use of and indications of breast MRI continue to expand. This review presents an overview of the basic concepts of AI imaging analysis and subsequently reviews the use cases for AI-enhanced MRI interpretation, that is, breast MRI triaging and lesion detection, lesion classification, prediction of treatment response, risk assessment, and image quality. Finally, it provides an outlook on the barriers and facilitators for the adoption of AI in breast MRI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 6.

3.
AJR Am J Roentgenol ; 222(1): e2329933, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850579

RESUMEN

DWI is a noncontrast MRI technique that measures the diffusion of water molecules within biologic tissue. DWI is increasingly incorporated into routine breast MRI examinations. Currently, the main applications of DWI are breast cancer detection and characterization, prognostication, and prediction of treatment response to neoadjuvant chemotherapy. In addition, DWI is promising as a noncontrast MRI alternative for breast cancer screening. Problems with suboptimal resolution and image quality have restricted the mainstream use of DWI for breast imaging, but these shortcomings are being addressed through several technologic advancements. In this review, we present an up-to-date assessment of the use of DWI for breast cancer imaging, including a summary of the clinical literature and recommendations for future use.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Imagen de Difusión por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Sensibilidad y Especificidad , Mama
4.
J Magn Reson Imaging ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37702382

RESUMEN

BACKGROUND: Monoexponential apparent diffusion coefficient (ADC) and biexponential intravoxel incoherent motion (IVIM) analysis of diffusion-weighted imaging is helpful in the characterization of breast tumors. However, repeatability/reproducibility studies across scanners and across sites are scarce. PURPOSE: To evaluate the repeatability and reproducibility of ADC and IVIM parameters (tissue diffusivity (Dt ), perfusion fraction (Fp ) and pseudo-diffusion (Dp )) within and across sites employing MRI scanners from different vendors utilizing 16-channel breast array coils in a breast diffusion phantom. STUDY TYPE: Phantom repeatability. PHANTOM: A breast phantom containing tubes of different polyvinylpyrrolidone (PVP) concentrations, water, fat, and sponge flow chambers, together with an MR-compatible liquid crystal (LC) thermometer. FIELD STRENGTH/SEQUENCE: Bipolar gradient twice-refocused spin echo sequence and monopolar gradient single spin echo sequence at 3 T. ASSESSMENT: Studies were performed twice in each of two scanners, located at different sites, on each of 2 days, resulting in four studies per scanner. ADCs of the PVP and water were normalized to the vendor-provided calibrated values at the temperature indicated by the LC thermometer for repeatability/reproducibility comparisons. STATISTICAL TESTS: ADC and IVIM repeatability and reproducibility within and across sites were estimated via the within-system coefficient of variation (wCV). Pearson correlation coefficient (r) was also computed between IVIM metrics and flow speed. A P value <0.05 was considered statistically significant. RESULTS: ADC and Dt demonstrated excellent repeatability (<2%; <3%, respectively) and reproducibility (both <5%) at the two sites. Fp and Dp exhibited good repeatability (mean of two sites 3.67% and 5.59%, respectively) and moderate reproducibility (mean of two sites 15.96% and 13.3%, respectively). The mean intersite reproducibility (%) of Fp /Dp /Dt was 50.96/13.68/5.59, respectively. Fp and Dt demonstrated high correlations with flow speed while Dp showed lower correlations. Fp correlations with flow speed were significant at both sites. DATA CONCLUSION: IVIM reproducibility results were promising and similar to ADC, particularly for Dt . The results were reproducible within both sites, and a progressive trend toward reproducibility across sites except for Fp . LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

5.
Sci Signal ; 16(780): eabq0752, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37040441

RESUMEN

Natural killer (NK) cells recognize virally infected cells and tumors. NK cell function depends on balanced signaling from activating receptors, recognizing products from tumors or viruses, and inhibitory receptors (such as KIR/Ly49), which recognize major histocompatibility complex class I (MHC-I) molecules. KIR/Ly49 signaling preserves tolerance to self but also conveys reactivity toward MHC-I-low target cells in a process known as NK cell education. Here, we found that NK cell tolerance and education were determined by the subcellular localization of the tyrosine phosphatase SHP-1. In mice lacking MHC-I molecules, uneducated, self-tolerant Ly49A+ NK cells showed accumulation of SHP-1 in the activating immune synapse, where it colocalized with F-actin and the signaling adaptor protein SLP-76. Education of Ly49A+ NK cells by the MHC-I molecule H2Dd led to reduced synaptic accumulation of SHP-1, accompanied by augmented signaling from activating receptors. Education was also linked to reduced transcription of Ptpn6, which encodes SHP-1. Moreover, synaptic SHP-1 accumulation was reduced in NK cells carrying the H2Dd-educated receptor Ly49G2 but not in those carrying the noneducating receptor Ly49I. Colocalization of Ly49A and SHP-1 outside of the synapse was more frequent in educated compared with uneducated NK cells, suggesting a role for Ly49A in preventing synaptic SHP-1 accumulation in NK cell education. Thus, distinct patterning of SHP-1 in the activating NK cell synapse may determine NK cell tolerance.


Asunto(s)
Antígenos Ly , Células Asesinas Naturales , Ratones , Animales , Receptores Similares a Lectina de Células NK/metabolismo , Antígenos Ly/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Sinapsis/metabolismo
6.
Invest Radiol ; 58(10): 710-719, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058323

RESUMEN

OBJECTIVES: The aim of the study is to develop and evaluate the performance of a deep learning (DL) model to triage breast magnetic resonance imaging (MRI) findings in high-risk patients without missing any cancers. MATERIALS AND METHODS: In this retrospective study, 16,535 consecutive contrast-enhanced MRIs performed in 8354 women from January 2013 to January 2019 were collected. From 3 New York imaging sites, 14,768 MRIs were used for the training and validation data set, and 80 randomly selected MRIs were used for a reader study test data set. From 3 New Jersey imaging sites, 1687 MRIs (1441 screening MRIs and 246 MRIs performed in recently diagnosed breast cancer patients) were used for an external validation data set. The DL model was trained to classify maximum intensity projection images as "extremely low suspicion" or "possibly suspicious." Deep learning model evaluation (workload reduction, sensitivity, specificity) was performed on the external validation data set, using a histopathology reference standard. A reader study was performed to compare DL model performance to fellowship-trained breast imaging radiologists. RESULTS: In the external validation data set, the DL model triaged 159/1441 of screening MRIs as "extremely low suspicion" without missing a single cancer, yielding a workload reduction of 11%, a specificity of 11.5%, and a sensitivity of 100%. The model correctly triaged 246/246 (100% sensitivity) of MRIs in recently diagnosed patients as "possibly suspicious." In the reader study, 2 readers classified MRIs with a specificity of 93.62% and 91.49%, respectively, and missed 0 and 1 cancer, respectively. On the other hand, the DL model classified MRIs with a specificity of 19.15% and missed 0 cancers, highlighting its potential use not as an independent reader but as a triage tool. CONCLUSIONS: Our automated DL model triages a subset of screening breast MRIs as "extremely low suspicion" without misclassifying any cancer cases. This tool may be used to reduce workload in standalone mode, to shunt low suspicion cases to designated radiologists or to the end of the workday, or to serve as base model for other downstream AI tools.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Humanos , Femenino , Triaje/métodos , Estudios Retrospectivos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Imagen por Resonancia Magnética/métodos
8.
BJR Open ; 4(1): 20210072, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105425

RESUMEN

Accurate evaluation of tumor response to treatment is critical to allow personalized treatment regimens according to the predicted response and to support clinical trials investigating new therapeutic agents by providing them with an accurate response indicator. Recent advances in medical imaging, computer hardware, and machine-learning algorithms have resulted in the increased use of these tools in the field of medicine as a whole and specifically in cancer imaging for detection and characterization of malignant lesions, prognosis, and assessment of treatment response. Among the currently available imaging techniques, magnetic resonance imaging (MRI) plays an important role in the evaluation of treatment assessment of many cancers, given its superior soft-tissue contrast and its ability to allow multiplanar imaging and functional evaluation. In recent years, deep learning (DL) has become an active area of research, paving the way for computer-assisted clinical and radiological decision support. DL can uncover associations between imaging features that cannot be visually identified by the naked eye and pertinent clinical outcomes. The aim of this review is to highlight the use of DL in the evaluation of tumor response assessed on MRI. In this review, we will first provide an overview of common DL architectures used in medical imaging research in general. Then, we will review the studies to date that have applied DL to magnetic resonance imaging for the task of treatment response assessment. Finally, we will discuss the challenges and opportunities of using DL within the clinical workflow.

9.
Nanomaterials (Basel) ; 12(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36079984

RESUMEN

CABs (Ca alginate beads), AVCABs (Aloe vera Ca alginate beads), and AVMNCABs (Aloe-vera functionalized magnetic nanoparticles entrapped Ca alginate beads) were developed as adsorbents for the removal of Cu(II) from aqueous solutions. The materials were characterized using Fourier-transform infrared (FTIR) spectroscopy, high-resolution scanning electron microscopic (HR-SEM) analysis, X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, and a vibrating-sample magnetometer (VSM). The effect of several parameters, such as pH, time, temperature, adsorbent dose, etc., were investigated. The adsorption isotherm of Cu(II) was adjusted best to the Langmuir model. The maximum adsorption capacities were 111.11 mg/g, 41.66 mg/g, and 15.38 mg/g for AVMNCABs, AVCABs, and CABs, respectively. The study of the adsorption kinetics for Cu(II) ions on beads followed a pseudo-second-order kinetic model, with a very good correlation in all cases. The adsorption studies used a spectrophotometric method, dealing with the reaction of Cu(II) with KSCN and variamine blue.

10.
Cancers (Basel) ; 14(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406514

RESUMEN

This multicenter retrospective study compared the performance of radiomics analysis coupled with machine learning (ML) with that of radiologists for the classification of breast tumors. A total of 93 consecutive women (mean age: 49 ± 12 years) with 104 histopathologically verified enhancing lesions (mean size: 22.8 ± 15.1 mm), classified as suspicious on multiparametric breast MRIs were included. Two experienced breast radiologists assessed all of the lesions, assigning a Breast Imaging Reporting and Database System (BI-RADS) suspicion category, providing a diffusion-weighted imaging (DWI) score based on lesion signal intensity, and determining the apparent diffusion coefficient (ADC). Ten predictive models for breast lesion discrimination were generated using radiomic features extracted from the multiparametric MRI. The area under the receiver operating curve (AUC) and the accuracy were compared using McNemar's test. Multiparametric radiomics with DWI score and BI-RADS (accuracy = 88.5%; AUC = 0.93) and multiparametric radiomics with ADC values and BI-RADS (accuracy= 88.5%; AUC = 0.96) models showed significant improvements in diagnostic accuracy compared to the multiparametric radiomics (DWI + DCE data) model (p = 0.01 and p = 0.02, respectively), but performed similarly compared to the multiparametric assessment by radiologists (accuracy = 85.6%; AUC = 0.03; p = 0.39). In conclusion, radiomics analysis coupled with the ML of multiparametric MRI could assist in breast lesion discrimination, especially for less experienced readers of breast MRIs.

11.
Front Oncol ; 12: 795265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280791

RESUMEN

The aim of this study was to determine the range of apparent diffusion coefficient (ADC) values for benign axillary lymph nodes in contrast to malignant axillary lymph nodes, and to define the optimal ADC thresholds for three different ADC parameters (minimum, maximum, and mean ADC) in differentiating between benign and malignant lymph nodes. This retrospective study included consecutive patients who underwent breast MRI from January 2017-December 2020. Two-year follow-up breast imaging or histopathology served as the reference standard for axillary lymph node status. Area under the receiver operating characteristic curve (AUC) values for minimum, maximum, and mean ADC (min ADC, max ADC, and mean ADC) for benign vs malignant axillary lymph nodes were determined using the Wilcoxon rank sum test, and optimal ADC thresholds were determined using Youden's Index. The final study sample consisted of 217 patients (100% female, median age of 52 years (range, 22-81), 110 with benign axillary lymph nodes and 107 with malignant axillary lymph nodes. For benign axillary lymph nodes, ADC values (×10-3 mm2/s) ranged from 0.522-2.712 for mean ADC, 0.774-3.382 for max ADC, and 0.071-2.409 for min ADC; for malignant axillary lymph nodes, ADC values (×10-3 mm2/s) ranged from 0.796-1.080 for mean ADC, 1.168-1.592 for max ADC, and 0.351-0.688 for min ADC for malignant axillary lymph nodes. While there was a statistically difference in all ADC parameters (p<0.001) between benign and malignant axillary lymph nodes, boxplots illustrate overlaps in ADC values, with the least overlap occurring with mean ADC, suggesting that this is the most useful ADC parameter for differentiating between benign and malignant axillary lymph nodes. The mean ADC threshold that resulted in the highest diagnostic accuracy for differentiating between benign and malignant lymph nodes was 1.004×10-3 mm2/s, yielding an accuracy of 75%, sensitivity of 71%, specificity of 79%, positive predictive value of 77%, and negative predictive value of 74%. This mean ADC threshold is lower than the European Society of Breast Imaging (EUSOBI) mean ADC threshold of 1.300×10-3 mm2/s, therefore suggesting that the EUSOBI threshold which was recently recommended for breast tumors should not be extrapolated to evaluate the axillary lymph nodes.

12.
Cancers (Basel) ; 13(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34944898

RESUMEN

The purpose of this retrospective study was to assess whether radiomics analysis coupled with machine learning (ML) based on standard-of-care dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can predict PD-L1 expression status in patients with triple negative breast cancer, and to compare the performance of this approach with radiologist review. Patients with biopsy-proven triple negative breast cancer who underwent pre-treatment breast MRI and whose PD-L1 status was available were included. Following 3D tumor segmentation and extraction of radiomic features, radiomic features with significant differences between PD-L1+ and PD-L1- patients were determined, and a final predictive model to predict PD-L1 status was developed using a coarse decision tree and five-fold cross-validation. Separately, all lesions were qualitatively assessed by two radiologists independently according to the BI-RADS lexicon. Of 62 women (mean age 47, range 31-81), 27 had PD-L1- tumors and 35 had PD-L1+ tumors. The final radiomics model to predict PD-L1 status utilized three MRI parameters, i.e., variance (FO), run length variance (RLM), and large zone low grey level emphasis (LZLGLE), for a sensitivity of 90.7%, specificity of 85.1%, and diagnostic accuracy of 88.2%. There were no significant associations between qualitative assessed DCE-MRI imaging features and PD-L1 status. Thus, radiomics analysis coupled with ML based on standard-of-care DCE-MRI is a promising approach to derive prognostic and predictive information and to select patients who could benefit from anti-PD-1/PD-L1 treatment.

13.
Diagnostics (Basel) ; 11(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063774

RESUMEN

The purpose of this multicenter retrospective study was to evaluate radiomics analysis coupled with machine learning (ML) of dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) radiomics models separately and combined as multiparametric MRI for improved breast cancer detection. Consecutive patients (Memorial Sloan Kettering Cancer Center, January 2018-March 2020; Medical University Vienna, from January 2011-August 2014) with a suspicious enhancing breast tumor on breast MRI categorized as BI-RADS 4 and who subsequently underwent image-guided biopsy were included. In 93 patients (mean age: 49 years ± 12 years; 100% women), there were 104 lesions (mean size: 22.8 mm; range: 7-99 mm), 46 malignant and 58 benign. Radiomics features were calculated. Subsequently, the five most significant features were fitted into multivariable modeling to produce a robust ML model for discriminating between benign and malignant lesions. A medium Gaussian support vector machine (SVM) model with five-fold cross validation was developed for each modality. A model based on DWI-extracted features achieved an AUC of 0.79 (95% CI: 0.70-0.88), whereas a model based on DCE-extracted features yielded an AUC of 0.83 (95% CI: 0.75-0.91). A multiparametric radiomics model combining DCE- and DWI-extracted features showed the best AUC (0.85; 95% CI: 0.77-0.92) and diagnostic accuracy (81.7%; 95% CI: 73.0-88.6). In conclusion, radiomics analysis coupled with ML of multiparametric MRI allows an improved evaluation of suspicious enhancing breast tumors recommended for biopsy on clinical breast MRI, facilitating accurate breast cancer diagnosis while reducing unnecessary benign breast biopsies.

14.
Nanomaterials (Basel) ; 11(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065311

RESUMEN

A novel beads adsorbent, consisting of calcium alginate entrapped on magnetic nanoparticles functionalized with methionine (MFMNABs), was developed for effective elimination of arsenic from water. The material was characterized by FT-IR (Fourier Transform Infrared Spectroscopy), SEM (Scanning Electron Microscopic), XRD (X-ray Diffraction) and TEM (Transmission Electron Microscopy). The arsenic removal capacity of the material was studied by altering variables such as pH of the solution, contact time, adsorbent dose and adsorbate concentration. The maximal removal of As(III) was 99.56% under optimal conditions with an equilibrium time of 110 min and pH 7.0-7.5. The adsorption followed a second order kinetics and data best fitted the Langmuir isotherm with a correlation coefficient of R2 = 0.9890 and adsorption capacity (qm) of 6.6533 mg/g. The thermodynamic study showed entropy change (∆S) and enthalpy change (∆H) to be 34.32 J mol-1 K and 5.25 kJ mol-1, respectively. This study proved that it was feasible to treat an As(III) solution with MFMNABs. The synthesized adsorbent was cost-effective, environmentally friendly and versatile, compared to other adsorbents. The adsorption study was carried by low cost spectrophotometric method using N- bromosuccinimide and rhodamine-B developed in our laboratory.

15.
Cancers (Basel) ; 13(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807205

RESUMEN

Diffusion-weighted imaging is a non-invasive functional imaging modality for breast tumor characterization through apparent diffusion coefficients. Yet, it has so far been unable to intuitively inform on tissue microstructure. In this IRB-approved prospective study, we applied novel multidimensional diffusion (MDD) encoding across 16 patients with suspected breast cancer to evaluate its potential for tissue characterization in the clinical setting. Data acquired via custom MDD sequences was processed using an algorithm estimating non-parametric diffusion tensor distributions. The statistical descriptors of these distributions allow us to quantify tissue composition in terms of metrics informing on cell densities, shapes, and orientations. Additionally, signal fractions from specific cell types, such as elongated cells (bin1), isotropic cells (bin2), and free water (bin3), were teased apart. Histogram analysis in cancers and healthy breast tissue showed that cancers exhibited lower mean values of "size" (1.43 ± 0.54 × 10-3 mm2/s) and higher mean values of "shape" (0.47 ± 0.15) corresponding to bin1, while FGT (fibroglandular breast tissue) presented higher mean values of "size" (2.33 ± 0.22 × 10-3 mm2/s) and lower mean values of "shape" (0.27 ± 0.11) corresponding to bin3 (p < 0.001). Invasive carcinomas showed significant differences in mean signal fractions from bin1 (0.64 ± 0.13 vs. 0.4 ± 0.25) and bin3 (0.18 ± 0.08 vs. 0.42 ± 0.21) compared to ductal carcinomas in situ (DCIS) and invasive carcinomas with associated DCIS (p = 0.03). MDD enabled qualitative and quantitative evaluation of the composition of breast cancers and healthy glands.

16.
Diagnostics (Basel) ; 11(3)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801022

RESUMEN

Altered metabolism including lipids is an emerging hallmark of breast cancer. The purpose of this study was to investigate if breast cancers exhibit different magnetic resonance spectroscopy (MRS)-based lipid composition than normal fibroglandular tissue (FGT). MRS spectra, using the stimulated echo acquisition mode sequence, were collected with a 3T scanner from patients with suspicious lesions and contralateral normal tissue. Fat peaks at 1.3 + 1.6 ppm (L13 + L16), 2.1 + 2.3 ppm (L21 + L23), 2.8 ppm (L28), 4.1 + 4.3 ppm (L41 + L43), and 5.2 + 5.3 ppm (L52 + L53) were quantified using LCModel software. The saturation index (SI), number of double bods (NBD), mono and polyunsaturated fatty acids (MUFA and PUFA), and mean chain length (MCL) were also computed. Results showed that mean concentrations of all lipid metabolites and PUFA were significantly lower in tumors compared with that of normal FGT (p ≤ 0.002 and 0.04, respectively). The measure best separating normal and tumor tissues after adjusting with multivariable analysis was L21 + L23, which yielded an area under the curve of 0.87 (95% CI: 0.75-0.98). Similar results were obtained between HER2 positive versus HER2 negative tumors. Hence, MRS-based lipid measurements may serve as independent variables in a multivariate approach to increase the specificity of breast cancer characterization.

18.
Eur Radiol ; 31(1): 356-367, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32780207

RESUMEN

OBJECTIVES: To assess DWI for tumor visibility and breast cancer detection by the addition of different synthetic b-values. METHODS: Eighty-four consecutive women who underwent a breast-multiparametric-MRI (mpMRI) with enhancing lesions on DCE-MRI (BI-RADS 2-5) were included in this IRB-approved retrospective study from September 2018 to March 2019. Three readers evaluated DW acquired b-800 and synthetic b-1000, b-1200, b-1500, and b-1800 s/mm2 images for lesion visibility and preferred b-value based on lesion conspicuity. Image quality (1-3 scores) and breast composition (BI-RADS) were also recorded. Diagnostic parameters for DWI were determined using a 1-5 malignancy score based on qualitative imaging parameters (acquired + preferred synthetic b-values) and ADC values. BI-RADS classification was used for DCE-MRI and quantitative ADC values + BI-RADS were used for mpMRI. RESULTS: Sixty-four malignant (average = 23 mm) and 39 benign (average = 8 mm) lesions were found in 80 women. Although b-800 achieved the best image quality score, synthetic b-values 1200-1500 s/mm2 were preferred for lesion conspicuity, especially in dense breast. b-800 and synthetic b-1000/b-1200 s/mm2 values allowed the visualization of 84-90% of cancers visible with DCE-MRI performing better than b-1500/b-1800 s/mm2. DWI was more specific (86.3% vs 65.7%, p < 0.001) but less sensitive (62.8% vs 90%, p < 0.001) and accurate (71% vs 80.7%, p = 0.003) than DCE-MRI for breast cancer detection, where mpMRI was the most accurate modality accounting for less false positive cases. CONCLUSION: The addition of synthetic b-values enhances tumor conspicuity and could potentially improve tumor visualization particularly in dense breast. However, its supportive role for DWI breast cancer detection is still not definite. KEY POINTS: • The addition of synthetic b-values (1200-1500 s/mm2) to acquired DWI afforded a better lesion conspicuity without increasing acquisition time and was particularly useful in dense breasts. • Despite the use of synthetic b-values, DWI was less sensitive and accurate than DCE-MRI for breast cancer detection. • A multiparametric MRI modality still remains the best approach having the highest accuracy for breast cancer detection and thus reducing the number of unnecessary biopsies.


Asunto(s)
Neoplasias de la Mama , Imágenes de Resonancia Magnética Multiparamétrica , Mama/diagnóstico por imagen , Densidad de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Medios de Contraste , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Mamografía , Estudios Retrospectivos , Sensibilidad y Especificidad
19.
Cancers (Basel) ; 12(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327532

RESUMEN

The purpose of this study was to investigate whether ultra-high-field dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the breast at 7T using quantitative pharmacokinetic (PK) analysis can differentiate between benign and malignant breast tumors for improved breast cancer diagnosis and to predict molecular subtypes, histologic grade, and proliferation rate in breast cancer. In this prospective study, 37 patients with 43 lesions suspicious on mammography or ultrasound underwent bilateral DCE-MRI of the breast at 7T. PK parameters (KTrans, kep, Ve) were evaluated with two region of interest (ROI) approaches (2D whole-tumor ROI or 2D 10 mm standardized ROI) manually drawn by two readers (senior reader, R1, and R2) independently. Histopathology served as the reference standard. PK parameters differentiated benign and malignant lesions (n = 16, 27, respectively) with good accuracy (AUCs = 0.655-0.762). The addition of quantitative PK analysis to subjective BI-RADS classification improved breast cancer detection from 88.4% to 97.7% for R1 and 86.04% to 97.67% for R2. Different ROI approaches did not influence diagnostic accuracy for both readers. Except for KTrans for whole-tumor ROI for R2, none of the PK parameters were valuable to predict molecular subtypes, histologic grade, or proliferation rate in breast cancer. In conclusion, PK-enhanced BI-RADS is promising for the noninvasive differentiation of benign and malignant breast tumors.

20.
BJR Open ; 2(1): 20190026, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178960

RESUMEN

The reprogramming of cellular metabolism is a hallmark of cancer diagnosis and prognosis. Proton magnetic resonance spectroscopic imaging (MRSI) is a non-invasive diagnostic technique for investigating brain metabolism to establish cancer diagnosis and IDH gene mutation diagnosis as well as facilitate pre-operative planning and treatment response monitoring. By allowing tissue metabolism to be quantified, MRSI provides added value to conventional MRI. MRSI can generate metabolite maps from a single volume or multiple volume elements within the whole brain. Metabolites such as NAA, Cho and Cr, as well as their ratios Cho:NAA ratio and Cho:Cr ratio, have been used to provide tumor diagnosis and aid in radiation therapy planning as well as treatment assessment. In addition to these common metabolites, 2-hydroxygluterate (2HG) has also been quantified using MRSI following the recent discovery of IDH mutations in gliomas. This has opened up targeted drug development to inhibit the mutant IDH pathway. This review provides guidance on MRSI in brain gliomas, including its acquisition, analysis methods, and evolving clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...