Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1396498, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978515

RESUMEN

This study was conducted in controlled environmental conditions to systematically evaluate multi-traits responses of winter wheat (Triticum aestivum L.) genotypes to different salinity levels. Responses were assessed at the germination to early seedling stage (Experiment 1). Seeds of different genotypes (n=292) were subjected to three salinity levels (0 [control], 60, and 120 mM NaCl). Principal Component Analysis (PCA) revealed that among studied traits seedling vigor index (SVI) contributed more towards the diverse response of genotypes to salinity stress. Based on SVI, eight contrasting genotypes assumed to be tolerant (Gage, Guymon, MTS0531, and Tascosa) and susceptible (CO04W320, Carson, TX04M410211) were selected for further physio-biochemical evaluation at the booting stage (Experiment 2) and to monitor grain yield. Higher level of salinity (120 mM NaCl) exposure at the booting stage increased thylakoid membrane damage, lipid peroxidation, sugars, proline, and protein while decreasing photosynthesis, chlorophyll index, starch, and grain yield. Based on grain yield, the assumed magnitude of the genotypic response shown in Experiment 1 was not analogous in Experiment 2. This indicates the necessity of individual screening of genotypes at different sensitive growth stages for identifying true salinity-tolerant and susceptible genotypes at a particular growth stage. However, based on higher grain yield and its least percentage reduction under higher salinity, Guymon and TX04M410211 were identified as tolerant, and Gage and CO04W320 as susceptible at the booting stage, and their biparental population can be used to identify genomic regions for booting stage-specific salinity response.

2.
New Phytol ; 232(6): 2267-2282, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34610157

RESUMEN

Chilling restrains the distribution of mangroves. We tested whether foliar phosphorus (P) fractions and gene expression are associated with cold tolerance in mangrove species. We exposed seedlings of six mangrove populations from different latitudes to favorable, chilling and recovery treatments, and measured their foliar P concentrations and fractions, photochemistry, nighttime respiration, and gene expression. A Kandelia obovata (KO; 26.45°N) population completely and a Bruguiera gymnorhiza (Guangxi) (BGG; 21.50°N) population partially (30%) survived chilling. Avicennia marina (24.29°N), and other B. gymnorhiza (26.66°N, 24.40°N, and 19.62°N) populations died after chilling. Photosystems of KO and photosystem I of BGG were least injured. During chilling, leaf P fractions, except nucleic acid P in three populations, declined and photoinhibition and nighttime respiration increased in all populations, with the greatest impact in B. gymnorhiza. Leaf nucleic acid P was positively correlated with photochemical efficiency during recovery and nighttime respiration across populations for each treatment. Relatively high concentrations of nucleic acid P and metabolite P were associated with stronger chilling tolerance in KO. Bruguiera gymnorhiza exhibited relatively low concentrations of organic P in favorable and chilling conditions, but its partially survived population showed stronger compensation in nucleic acid P and Pi concentrations and gene expression during recovery.


Asunto(s)
Avicennia , Rhizophoraceae , China , Frío , Fósforo , Fotosíntesis , Hojas de la Planta
3.
Front Plant Sci ; 11: 1262, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973831

RESUMEN

Effect of diurnal temperature amplitude on carbon tradeoff (photosynthesis vs. respiration) and growth are not well documented in C4 crops, especially under changing temperatures of light (daytime) and dark (nighttime) phases in 24 h of a day. Fluctuations in daytime and nighttime temperatures due to climate change narrows diurnal temperature amplitude which can alter circadian rhythms in plant, thus influence the ability of plants to cope with temperature changes and cause contradictory responses in carbon tradeoff, particularly in night respiration during dark phase, and growth. Sorghum [Sorghum bicolor (L.) Moench] is a key C4 cereal crop grown in high temperature challenging agro-climatic regions. Hence, it is important to understand its response to diurnal temperature amplitude. This is the first systematic investigation using controlled environmental facility to monitor the response of sorghum to different diurnal temperature amplitudes with same mean temperature. Two sorghum hybrids (DK 53 and DK 28E) were grown under optimum (27°C) and high (35°C) mean temperatures with three different diurnal temperature amplitudes (2, 10, and 18°C) accomplished by modulating daytime and nighttime temperatures [optimum daytime and nighttime temperatures (ODNT): 28/26, 32/22, and 36/18°C and high daytime and nighttime temperatures (HDNT): 36/34, 40/30, and 44/26°C]. After exposure to different temperature conditions, total soluble sugars, starch, total leaf area and biomass were reduced, while night respiration and specific leaf area were increased with narrowing of diurnal temperature amplitude (18 to 2°C) of HDNT followed by ODNT. However, there was no influence on photosynthesis across different ODNT and HDNT. Contradiction in response of foliar gas exchange and growth suggests higher contribution of night respiration for maintenance rather than growth with narrowing of diurnal temperature amplitude of ODNT and HDNT. Results imply that diurnal temperature amplitude has immense impact on the carbon tradeoff and growth, regardless of hybrid variation. Hence, diurnal temperature amplitude and night respiration should be considered while quantifying response and screening for high temperature tolerance in sorghum genotypes and comprehensive understanding of dark phase mechanisms which are coupled with stress response can further strengthen screening procedures.

4.
Plant Cell Environ ; 42(4): 1233-1246, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30471235

RESUMEN

Carbon loss under high night-time temperature (HNT) leads to significant reduction in wheat yield. Growth chamber studies were carried out using six winter wheat genotypes, to unravel postheading HNT (23°C)-induced alterations in carbon balance, source-sink metabolic changes, yield, and yield-related traits compared with control (15°C) conditions. Four of the six tested genotypes recorded a significant increase in night respiration after 4 days of HNT exposure, with all the cultivars regulating carbon loss and demonstrating different degree of acclimation to extended HNT exposure. Metabolite profiling indicated carbohydrate metabolism in spikes and activation of the TriCarboxylic Acid (TCA) cycle in leaves as important pathways operating under HNT exposure. A significant increase in sugars, sugar-alcohols, and phosphate in spikes of the tolerant genotype (Tascosa) indicated osmolytes and membrane protective mechanisms acting against HNT damage. Enhanced night respiration under HNT resulted in higher accumulation of TCA cycle intermediates like isocitrate and fumarate in leaves of the susceptible genotype (TX86A5606). Lower grain number due to lesser productive spikes and reduced grain weight due to shorter grain-filling duration determined HNT-induced yield loss in winter wheat. Traits and mechanisms identified will help catalyze the development of physiological and metabolic markers for breeding HNT-tolerant wheat.


Asunto(s)
Carbono/metabolismo , Triticum/metabolismo , Secuestro de Carbono , Ritmo Circadiano , Calor , Metabolómica , Fotosíntesis , Triticum/crecimiento & desarrollo , Triticum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...