Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 11(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35625213

RESUMEN

Natural materials, such as bamboo, is able to withstand the rough conditions posed by its environment, such as resistance to degradation by microorganisms, due to notable antibacterial characteristics. The methods of extraction exert a significant influence on the effectiveness of bamboo-derived antibacterial agents. In this study, the antibacterial characteristics of various types of Japanese bamboo, namely, Kyoto-Moso, Kyushu-Moso and Kyushu-Madake were investigated by considering an extraction and a non-extraction method. The characterization of the efficacy of antibacterial agents of various bamboo samples derived from both methods of extractions was conducted using an in vitro cultured bacteria technique consisting of E. coli and S. aureus. Antibacterial test results based on colony-forming units showed that antibacterial agents derived from the non-extraction method yielded better efficacy when tested against E. coli and S. aureus. Most specimens displayed maximum antibacterial efficacy following a 48-h period. The antibacterial agents derived from thermally modified bamboo powder via the non-extraction method showed improved antibacterial activity against S. aureus specifically. In contrast, absorbance results indicated that antibacterial agents derived from the extraction method yielded poor efficacy when tested against both E. coli and S. aureus. From FTIR analysis, characteristic bands assigned to the C-O and C-H functional groups in lignin were recognized as responsible for the antibacterial trait observed in both natural and thermally modified Japanese bamboo powder. Techniques to exploit the antibacterial characteristics present in bamboo by identification of antibacterial source and adoption of adequate methods of extraction are key steps in taking advantage of this attribute in numerous applications involving bamboo-derived products such as laminates and textile fabrics.

2.
Materials (Basel) ; 15(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35208082

RESUMEN

Treatment modification to improve the durability of bamboo against biotic and abiotic factors often results in adverse effects to its mechanical properties due to changes in hygroscopic characteristics. This study aims at exploring in more detail, the effect of treatment modification, in particular smoke treatment, on the hygroscopic nature of bamboo. In the first part of this study, changes to its chemical structure were investigated by Raman and Fourier-transform infrared (FTIR) spectroscopic techniques. From Raman analysis, specific bands attributed to lignin component in bamboo, namely at 1600 cm-1 and 1632 cm-1, which varied in intensities among treated and untreated specimens, could be considered to assess the extent of treatment modification. Besides, FTIR results showed that the chemical constituents of bamboo inner and outermost surfaces vary extensively with distinctive changes during treatment modification. The steam component in smoke treatment is assumed to cause a slight increase in the moisture content in the outermost surface of smoked bamboo as evidenced by FTIR results. In addition, the hydrophobic surface of smoked bamboo, which was affected during smoke treatment modification due to superior mean roughness parameter in its outermost surface, impacted its water-repelling ability. From FTIR results, an increase in lignin in bamboo was confirmed at peak 1114 cm-1, which occurred as a result of thermal effect above a temperature of 100 °C leading to poly-condensation reactions. The increase in lignin is assumed to cause an overall increase in hardness of smoked bamboo which was found to be two-fold higher when compared with the untreated ones. The approach of this research investigation, which has shown the benefit of using spectroscopic techniques to monitor and understand the changes in the hygroscopic nature of bamboo surfaces, can likewise be considered to predict the corresponding effects of treatment modification or degradation on the mechanical properties of natural materials.

3.
Antibiotics (Basel) ; 10(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34827230

RESUMEN

Cellulose acetate (CA) is a synthetic compound that is derived from the acetylation of cellulose. CA is well known as it has been used for many commercial products such as textiles, plastic films, and cigarette filters. In this research, antibacterial CA composites were produced by addition of aluminum nitride (AlN) at different weight percentage, from 0 wt. % to 20 wt. %. The surface characterization was performed using laser microscope, Raman and FTIR spectroscopy. The mechanical and thermal properties of the composite were analyzed. Although the mechanical strength tended to decrease as the concentration of AlN increased and needed to be optimized, the melting temperature (Tm) and glass transition temperature (Tg) showed a shift toward higher values as the AlN concentration increased leading to an improvement in thermal properties. AlN additions in weight percentages >10 wt. % led to appreciable antibacterial properties against S. epidermidis and E. coli bacteria. Antibacterial CA/AlN composites with higher thermal stability have potential applications as alternative materials for plastic packaging in the food industry.

4.
Materials (Basel) ; 14(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669485

RESUMEN

This study probes into the root cause of split in thermally modified bamboo culm by investigating the underlying effect of thermal contraction with respect to its orthotropic nature by experimental and numerical methods while concurrently monitoring the chemical variation of its structure by Fourier transformed infrared spectroscopy (FTIR). In first part of this study, a non-linear increase in dimensional and weight changes of small clear bamboo specimens were observed with increasing temperature. The dimensional changes in the radial and tangential directions significantly exceeded that in the longitudinal direction. From FTIR results, shrinkage effect between 150 °C to 200 °C was associated with weight loss engendered by reduction in weakly bound water and increase in desorption of water content while alteration of its mechanical properties was attributed to changes in cellulose, hemicellulose, and lignin. From results of finite element method (FEM), the graded variation in thermal expansion coefficient, which showed the formation of a narrowed region of strain concentration corresponding to longitudinal crack propagation, was associated with the inducement of internal forces, namely tensile and compressive forces, at specific regions along the culm length. The results of this study can be useful to achieve optimized durability in modified bamboo for construction.

5.
Antibiotics (Basel) ; 9(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266277

RESUMEN

With the increased scientific interest in green technologies, many researches have been focused on the production of polymeric composites containing naturally occurring reinforcing particles. Apart from increasing mechanical properties, these additions can have a wide range of interesting effects, such as increasing the resistance to bacterial and fungal colonization. In this work, different amounts of two different natural products, namely neem and turmeric, were added to polyethylene to act as a natural antibacterial and antifungal product for food packaging applications. Microscopic and spectroscopic characterization showed that fractions of up to 5% of these products could be dispersed into low-molecular weight polyethylene, while higher amounts could not be properly dispersed and resulted in an inhomogeneous, fragile composite. In vitro testing conducted with Escherichia coli, Staphylococcus aureus, and Candida albicans showed a reduced proliferation of pathogens when compared to the polyethylene references. In particular, turmeric resulted in being more effective against E. coli when compared to neem, while they had similar performances against S. aureus. Against C. albicans, only neem was able to show a good antifungal behavior, at high concentrations. Tensile testing showed that the addition of reinforcing particles reduced the mechanical properties of polyethylene, and in the case of turmeric, it was further reduced by UV irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...