Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 21: 3964-3986, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635765

RESUMEN

Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of pathologically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underexplored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived "healthy" normal tissues. We found a number of systemic molecular differences related to activation of the immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were deficient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition checkpoint. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min - 24-hour time frame at 4ºC, an RNA degradation pattern in lung biosamples resulted in an artifact "differential" expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should be addressed in practice.

2.
DNA Repair (Amst) ; 123: 103448, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36657260

RESUMEN

DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Reparación del ADN , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Neoplasias/genética , Proteómica , Proteína p53 Supresora de Tumor/metabolismo
3.
BMC Genomics ; 21(Suppl 7): 535, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912141

RESUMEN

Chimpanzees are the closest living relatives of humans. The divergence between human and chimpanzee ancestors dates to approximately 6,5-7,5 million years ago. Genetic features distinguishing us from chimpanzees and making us humans are still of a great interest. After divergence of their ancestor lineages, human and chimpanzee genomes underwent multiple changes including single nucleotide substitutions, deletions and duplications of DNA fragments of different size, insertion of transposable elements and chromosomal rearrangements. Human-specific single nucleotide alterations constituted 1.23% of human DNA, whereas more extended deletions and insertions cover ~ 3% of our genome. Moreover, much higher proportion is made by differential chromosomal inversions and translocations comprising several megabase-long regions or even whole chromosomes. However, despite of extensive knowledge of structural genomic changes accompanying human evolution we still cannot identify with certainty the causative genes of human identity. Most structural gene-influential changes happened at the level of expression regulation, which in turn provoked larger alterations of interactome gene regulation networks. In this review, we summarized the available information about genetic differences between humans and chimpanzees and their potential functional impacts on differential molecular, anatomical, physiological and cognitive peculiarities of these species.


Asunto(s)
Elementos Transponibles de ADN , Pan troglodytes , Animales , Inversión Cromosómica , Elementos Transponibles de ADN/genética , Evolución Molecular , Expresión Génica , Genómica , Humanos , Pan troglodytes/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-30655270

RESUMEN

Ovarian cancer is the fifth leading cause of cancer-related female mortality and the most lethal gynecological cancer. In this report, we present a rare case of recurrent granulosa cell tumor (GCT) of the ovary. We describe the case of a 26-yr-old woman with progressive GCT of the right ovary despite multiple lines of therapy who underwent salvage therapy selection based on a novel bioinformatical decision support tool (Oncobox). This analysis generated a list of potentially actionable compounds, which when used clinically lead to partial response and later long-term stabilization of the patient's disease.


Asunto(s)
Tumor de Células de la Granulosa/tratamiento farmacológico , Mesilato de Imatinib/administración & dosificación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adulto , Femenino , Humanos , Mesilato de Imatinib/uso terapéutico , Medicina de Precisión , Resultado del Tratamiento
5.
Exp Hematol Oncol ; 7: 21, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202637

RESUMEN

BACKGROUND: Cholangiocarcinoma is an aggressive tumor with poor prognosis. Most of the cases are not available for surgery at the stage of the diagnosis and the best clinical practice chemotherapy results in about 12-month median survival. Several tyrosine kinase inhibitors (TKIs) are currently under investigation as an alternative treatment option for cholangiocarcinoma. Thus, the report of personalized selection of effective inhibitor and case outcome are of clinical interest. CASE PRESENTATION: Here we report a case of aggressive metastatic cholangiocarcinoma (MCC) in 72-year-old man, sequentially treated with two targeted chemotherapies. Initially disease quickly progressed during best clinical practice care (gemcitabine in combination with cisplatin or capecitabine), which was accompanied by significant decrease of life quality. Monotherapy with TKI sorafenib was prescribed to the patient, which resulted in stabilization of tumor growth and elimination of pain. The choice of the inhibitor was made based on high-throughput screening of gene expression in the patient's tumor biopsy, utilized by Oncobox platform to build a personalized rating of potentially effective target therapies. However, time to progression after start of sorafenib administration did not exceed 6 months and the regimen was changed to monotherapy with Pazopanib, another TKI predicted to be effective for this patient according to the same molecular test. It resulted in disease progression according to RECIST with simultaneous elimination of sorafenib side effects such as rash and hand-foot syndrome. After 2 years from the diagnosis of MCC the patient was alive and physically active, which is substantially longer than median survival for standard therapy. CONCLUSION: This case evidences that sequential personalized prescription of different TKIs may show promising efficacy in terms of survival and quality of life in MCC.

6.
Cell Cycle ; 15(24): 3378-3389, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-28051642

RESUMEN

Responses to human cytomegalovirus (HCMV) infection are largely individual and cell type specific. We investigated molecular profiles in 2 primary cell cultures of human fibroblasts, which are highly or marginally sensitive to HCMV infection, respectively. We screened expression of genes and microRNAs (miRs) at the early (3 hours) stage of infection. To assess molecular pathway activation profiles, we applied bioinformatic algorithms OncoFinder and MiRImpact. In both cell types, pathway regulation properties at mRNA and miR levels were markedly different. Surprisingly, in the infected highly sensitive cells, we observed a "freeze" of miR expression profiles compared to uninfected controls. Our results evidence that in the sensitive cells, HCMV blocks intracellular regulation of microRNA expression already at the earliest stage of infection. These data suggest somewhat new functions for HCMV products and demonstrate dependence of miR expression arrest on the host-encoded factors.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación de la Expresión Génica , MicroARNs/genética , Adulto , Línea Celular , Fibroblastos/patología , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , MicroARNs/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/genética , Proteínas Virales/metabolismo
7.
Gene ; 511(1): 46-53, 2012 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-22982412

RESUMEN

L1 (LINE-1) is one of the most abundant families of human transposable elements. Full-length human L1 has an ~900 bp long 5' untranslated region (5' UTR) which harbors an internal promoter for the RNA polymerase II. It is generally accepted that the first 100 bp of the 5' UTR function as a "minimal promoter" which directs transcription of the entire LINE-1 unit from the extreme 5' terminus. We re-investigated promoter activities of the different DNA fragments that cover the whole L1 5' UTR in cultured human cells by using the luciferase reporter system. Analysis of both mRNA expression and luciferase activity levels indicated that the very important region for the effective transcription is located within the internal part of the L1 5' UTR between nucleotide positions +390 and +526. 5' RACE analysis revealed that in the context of the complete 5' UTR, this part drives mRNA synthesis both from the canonical 5'-terminal transcription start site (TSS) and from within the internal region. In the absence of the first 100 bp, the L1 5' UTR efficiently directed transcription from aberrant TSSs located within its 3' proximal part or the ORF1. Finally, we analyzed transcripts originated from endogenous (genomic) L1 elements and identified two novel TSSs located at positions +525 and +570. We propose a model in which the internal part (390-526) of the L1 5' UTR plays a key role for recruitment of transcription initiation complex, which then may be either positioned onto the 5' terminally located "minimal promoter", or used proximately to direct 5' truncated RNA copy. Intriguingly, this internal regulatory element substantially overlaps with the region of the L1 5' UTR that is known to drive transcription in the opposite direction suggesting the existence of a common core for the bidirectional transcription.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Regiones no Traducidas 5' , Secuencia de Bases , Línea Celular , Genes Reporteros , Células HEK293 , Humanos , Luciferasas/genética , Modelos Biológicos , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia , Sitio de Iniciación de la Transcripción
8.
Gene ; 505(1): 128-36, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22609064

RESUMEN

SVA elements represent the youngest family of hominid non-LTR retrotransposons. Recently, a human-specific subfamily (termed SVA(F1), CpG-SVA, or MAST2-SVA) was discovered representing fusion of the CpG island-containing exon 1 of the MAST2 gene and a 5'-truncated SVA. SVA(F1) includes at least 84 members, which suggests exceptionally high retrotransposition level. We investigated if the acquirement of the MAST2 CpG-island might play a role in the success of the SVA(F1) subfamily. We observed that in 16 samples representing seven human tissues, MAST2 was cotranscribed with the members of the SVA(F1) subfamily, but not with other retrotransposons. We found that the methylation status of the MAST2-derived sequences of SVA(F1) elements reversely correlates with the transcriptional activity of MAST2. The MAST2 sequence at the 5' end of SVA(F1) acts as a positive transcriptional regulator in human germ cells. Finally, in various testicular tissue samples we uncovered a transcriptional correlation of MAST2 with the human L1, Alu and SVA retrotransposons.


Asunto(s)
Islas de CpG/fisiología , Exones/fisiología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Elementos Reguladores de la Transcripción/fisiología , Retroelementos/fisiología , Transcripción Genética/fisiología , Células Germinativas/metabolismo , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Testículo/metabolismo
9.
Gene ; 498(1): 75-80, 2012 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-22353364

RESUMEN

Genome-wide methylation studies frequently lack adequate controls to estimate proportions of background reads in the resulting datasets. To generate appropriate control pools, we developed technique termed nMETR (non-methylated tag recovery) based on digestion of genomic DNA with methylation-sensitive restriction enzyme, ligation of adapter oligonucleotide and PCR amplification of non-methylated sites associated with genomic repetitive elements. The protocol takes only two working days to generate amplicons for deep sequencing. We applied nMETR for human DNA using BspFNI enzyme and retrotransposon Alu-specific primers. 454-sequencing enabled identification of 1113 nMETR tag sites, of them ~65% were parts of CpG islands. Representation of reads inversely correlated with methylation levels, thus confirming nMETR fidelity. We created software that eliminates background reads and enables to map and annotate individual tags on human genome. nMETR tags may serve as the controls for large-scale epigenetic studies and for identifying unmethylated transposable elements located close to genomic CpG islands.


Asunto(s)
Metilación de ADN/genética , Técnicas Genéticas , Elementos Alu , Secuencia de Bases , Islas de CpG , Cartilla de ADN/genética , Enzimas de Restricción del ADN , Técnicas Genéticas/estadística & datos numéricos , Genoma Humano , Humanos , Análisis de Secuencia de ADN , Lugares Marcados de Secuencia , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA