Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(36): 6229-6240, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39206535

RESUMEN

Lead ions (Pb2+) are a widely distributed and highly toxic heavy metal pollutant, which seriously threatens the environment, economy and human safety. Here, a label-free ratiometric fluorescent biosensor was constructed for Pb2+ detection using DNAzyme-driven target cycling and exonuclease III (Exo III)-mediated DNA cycling as a dual signal amplification strategy. The SYBR Green I (SGI) and N-methyl mesoporphyrin IX (NMM) used in this study are characterized by low cost, storage resistance, and short preparation time compared with conventional signaling probes labeled with fluorescent groups. Unlike the single-emission fluorescence strategy, monitoring the fluorescence intensity ratio of SGI and NMM can effectively reduce external interference to achieve accurate detection of Pb2+. DNAzyme structures on the surface of magnetic beads (MBs) can recognize Pb2+ and activate the target circulatory system to cleave single-stranded DNA (ssDNA). The ssDNA further initiated the Exo III-assisted DNA circulatory system to digest double-stranded DNA (dsDNA) and release guanine-rich G1. Finally, the fluorescence signals of SGI and NMM were weakened and enhanced, respectively. The sensing strategy achieved a wide linear range from 0.5 to 500 nM and a low limit of detection (LOD) of 26.4 pM. Furthermore, its anti-interference ability and potential applicability for Pb2+ detection in actual samples were verified. This work ingeniously combines the dual signal amplification strategy with the ratiometric sensing strategy constructed by structure-specific fluorescent dyes, which provides a promising method for constructing sensitive and accurate fluorescent biosensors.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Exodesoxirribonucleasas , Colorantes Fluorescentes , Plomo , Plomo/análisis , Plomo/química , Colorantes Fluorescentes/química , Técnicas Biosensibles/métodos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , ADN Catalítico/química , Espectrometría de Fluorescencia/métodos , Límite de Detección , Quinolinas/química , Benzotiazoles/química , Mesoporfirinas/química , Diaminas/química , Compuestos Orgánicos/química , Humanos , Fluorescencia
2.
Anal Chim Acta ; 1323: 343072, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39182973

RESUMEN

BACKGROUND: Mycotoxins, a class of secondary metabolites produced by molds, are widely distributed in nature and are very common in food contamination. Aflatoxin B1 (AFB1) is a highly stable natural mycotoxin, and many agricultural products are easily contaminated by AFB1, it is important to establish a sensitive and efficient AFB1 detection method for food safety. The fluorescence aptamer sensor has shown satisfactory performance in AFB1 detection, but most of the fluorescence aptasensors are not sensitive enough, so improving the sensitivity of the aptasensor becomes the focus of this work. RESULTS: Herein, an innovative fluorescent aptasensor for AFB1 detection which is based on catalytic hairpin assembly (CHA) and rolling circle amplification (RCA) driven by triple helix molecular switch (THMS) is proposed. A functional single-strand with an AFB1 aptamer, here called an APF, is first designed to lock onto the signal transduction probe (STP), which separates from THMS when target AFB1 is present. Subsequently, STP initiates the RCA reaction along the circular probe, syntheses macro-molecular mass products through repeated triggering sequences, triggers the CHA reaction to produce a large number of H1-H2 structures, which causes FAM to move away from BHQ-1 and recover its fluorescence signal. The fluorescence signal from FAM at 520 nm was collected as the signal output of aptasensor in this work. With high amplification efficiency of RCA and CHA of the fluorescence sensor, resulting in a low LOD value of 2.95 pg mL-1(S/N = 3). SIGNIFICANCE: The successful establishment of the sensor designed in this work shows that the cascade amplification reaction is perfectly applied in the fluorescent aptamer sensor, and the signal amplification through the reaction between DNA strands is a simple and efficient method. In addition, it's also important to remember that the aptasensor can detect other targets only by changing the sequence of the aptamer, without redesigning other DNA sequences in the reaction system.


Asunto(s)
Aflatoxina B1 , Aptámeros de Nucleótidos , Técnicas Biosensibles , Colorantes Fluorescentes , Técnicas de Amplificación de Ácido Nucleico , Aflatoxina B1/análisis , Aflatoxina B1/química , Aptámeros de Nucleótidos/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Límite de Detección , Espectrometría de Fluorescencia , Contaminación de Alimentos/análisis , Catálisis
3.
Food Chem ; 460(Pt 3): 140739, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116770

RESUMEN

Citrinin (CIT) is a mycotoxin with nephrotoxicity and hepatotoxicity, presenting a significant threat to human health that is often overlooked. Therefore, a dual-signal mode (DPV and SWV) aptasensor for citrinin (CIT) detection was constructed based on tetrahedral DNA nanostructures (TDN) in this study. Furthermore, PtPdCo mesoporous nanozymes exhibit catalase-like catalytic functions, generating significant electrochemical signals through a Fenton-like reaction. Meanwhile their excellent Methylene Blue (MB) loading capability ensures independent dual signal outputs. The RecJf exonuclease-assisted (RecJf Exo-assisted) process can expand the linear detection range, enabling further amplification of the signal. Under optimized conditions, the constructed aptaensor exhibited excellent detection performance with limits of detection (LODs) of 7.67 × 10-3 ng·mL-1 (DPV mode) and 1.57 × 10-3 ng·mL-1 (SWV mode). Due to its multiple signal amplification and highly accurate dual-signal mode detection capability, this aptasensor shows promising potential for the in situ detection.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Citrinina , ADN , Técnicas Electroquímicas , Contaminación de Alimentos , Límite de Detección , Nanoestructuras , Citrinina/análisis , Citrinina/química , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Nanoestructuras/química , Contaminación de Alimentos/análisis , ADN/química , Platino (Metal)/química
4.
Foods ; 13(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39063260

RESUMEN

A novel electrochemical aptasensor was prepared for the simultaneous determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA). Composites of Au nanoparticles and polyethyleneimine-reduced graphene oxide (AuNPs/PEI-RGO) with good electrical conductivity and high specific surface area were employed as the supporting substrate, demonstrating the ability to provide more binding sites for aptamers and accelerate the electron transfer. Aptamers were immobilized on a AuNPs/PEI-RGO surface to specifically recognize AFB1 and OTA. A metal-organic framework of UiO-66-NH2 served as the signal carrier to load metal ions of Cu2+ and Pb2+, which facilitated the generation of independent current peaks and effectively improved the electrochemical signals. The prepared aptasensor exhibited sensitive current responses for AFB1 and OTA with a linear range of 0.01 to 1000 ng/mL, with detection limits of 6.2 ng/L for AFB1 and 3.7 ng/L for OTA, respectively. The aptasensor was applied to detect AFB1 and OTA in cereal samples, achieving results comparable with HPLC-MS, with recovery results from 92.5% to 104.1%. With these merits of high sensitivity and good selectivity and stability, the prepared aptasensor proved to be a powerful tool for evaluating contaminated cereals.

5.
Anal Chim Acta ; 1316: 342800, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969435

RESUMEN

Heavy metal pollution in the environment has become a significant global concern due to its detrimental effects on human health and the environment. In this study, we report an electrochemical aptasensor for the simultaneous detection of Hg2+ and Pb2+. Gold nanoflower/polyethyleneimine-reduced graphene oxide (AuNFs/PEI-rGO) was introduced on the surface of a gold electrode to improve sensing performance. The aptasensor is based on the formation of a T-Hg2+-T mismatch structure and specific cleavage of the Pb2+-dependent DNAzyme, resulting in a dual signal generated by the Exo III specific digestion of methylene blue (MB) labeled at the 3' end of probe DNA-1 and the reduction of the substrate ascorbic acid (AA) catalyzed by the signal label. The decrease of MB signal and the increase of AA oxidation peak was used to indicate the content of Hg2+ and Pb2+, respectively, with detection limits of 0.11 pM (Hg2+) and 0.093 pM (Pb2+). The aptasensor was also used for detecting Hg2+ and Pb2+ in water samples with good recoveries. Overall, this electrochemical aptasensor shows promising potential for sensitive and selective detection of heavy metals in environmental samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Exodesoxirribonucleasas , Plomo , Mercurio , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Mercurio/análisis , Plomo/análisis , Plomo/química , Estructuras Metalorgánicas/química , Aptámeros de Nucleótidos/química , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Contaminantes Químicos del Agua/análisis , Técnicas Biosensibles/métodos , Grafito/química , Oro/química , Límite de Detección , Electrodos , ADN Catalítico/química
6.
Talanta ; 276: 126260, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759364

RESUMEN

Lead ion pollution has become a serious public health concern worldwide. Therefore, sensitive detection of Pb2+ is critical to control lead pollution, assess risks, and safeguard the health of vulnerable populations. This study reports a highly sensitive labelling-free electrochemical aptasensor for Pb2+ detection. The aptasensor employs silver-platinum nanoparticles/graphene oxide (AgPt/GO) and Exonuclease III (Exo III) for signal amplification. GO provides high surface area and conductivity for immobilizing AgPt NPs, facilitating the immobilization of aptamer (Apt) probes on the electrode surface. Exo III enzymatically cleaves DNA strands on the electrode surface, releasing DNA segments to amplify the signal further. The synergistic amplification by AgPt/GO and ExoIII enables an extremely wide linear detection range of 0.05 pM-5 nM for Pb2+, with a low detection limit of 0.019 pM. Additionally, the G-quadruplex structure ensures excellent selectivity for Pb2+ detection, resulting in high reproducibility and stability of the aptasensor. The aptasensor was successfully applied to detect spiked Pb2+ in tap water samples, achieving recovery rates ranging from 96 to 108.4 %. By integrating nanomaterials, aptamers and enzymatic amplification, the aptasensor facilitates highly sensitive and selective detection of Pb2+, demonstrating potential for practical applications in environmental monitoring.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Exodesoxirribonucleasas , Grafito , Plomo , Nanocompuestos , Platino (Metal) , Plata , Grafito/química , Plomo/análisis , Plomo/química , Aptámeros de Nucleótidos/química , Exodesoxirribonucleasas/química , Técnicas Electroquímicas/métodos , Platino (Metal)/química , Nanocompuestos/química , Plata/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Límite de Detección , Contaminantes Químicos del Agua/análisis , Agua Potable/análisis , Electrodos , G-Cuádruplex
7.
Bioelectrochemistry ; 158: 108728, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38733721

RESUMEN

Herein, an aptasensor based on a signal amplification strategy was developed for the sensitive detection of procymidone (PCM). AgPd nanoparticles/Polenimine Graphite oxide (AgPdNPs/PEI-GO) was weaned as electrode modification material to facilitate electron transport and increase the active sites on the electrode surface. Besides, Pt@Ni-Co nanoboxes (Pt@Ni-CoHNBs) were utilized to be carriers for signaling tags, after hollowing ZIF-67 and growing Pt, the resulting Pt@Ni-CoHNBs has a tremendous amounts of folds occurred on the surface, enables it to carry a larger quantity of thionine, thus amplify the detectable electrochemical signal. In the presence of PCM, the binding of PCM to the signal probe would trigger a change in electrical signal. The aptasensor was demonstrated with excellent sensitivity and a low detection limit of 0.98 pg·mL-1, along with a wide linear range of 1 µg·mL-1 to 1 pg·mL-1. Meanwhile, the specificity, stability and reproducibility of the constructed aptasensor were proved to be satisfactory.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Grafito , Límite de Detección , Nanopartículas del Metal , Paladio , Platino (Metal) , Plata , Grafito/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Platino (Metal)/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Paladio/química , Plata/química , Níquel/química , Polietileneimina/química , Cobalto/química , Reproducibilidad de los Resultados
8.
ACS Appl Mater Interfaces ; 16(17): 22704-22714, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640487

RESUMEN

Balancing the accuracy and simplicity of aptasensors is a challenge in their construction. This study addresses this issue by leveraging the remarkable loading capacity and peroxidase-like catalytic activity of PtPdCu trimetallic nanoparticles, which reduces the reliance on precious metals. A dual-signal readout aptasensor for enrofloxacin (ENR) detection is designed, incorporating DNA dynamic network cascade reactions to further amplify the output signal. Exploiting the strong loading capacity of PtPdCu nanoparticles, they are self-assembled with thionine (Thi) to form a signal label capable of generating signals in two independent modes. The label exhibits excellent enzyme-like catalytic activity and enhances electron transfer capabilities. Differential pulse voltammetry (DPV) and square-wave voltammetry (SWV) are employed to independently read signals from the oxidation-reduction reaction of Thi and the catalytic oxidation of hydroquinone (HQ) to benzoquinone (BQ) by H2O2. The introduced DNA dynamic network cascade reaction modularizes sample processing and electrode surface signal generation, avoiding electrode contamination and efficiently increasing the output of the catalyzed hairpin assembly (CHA) cycle. Under optimized conditions, the developed aptasensor demonstrates detection limits of 0.112 (DPV mode) and 0.0203 pg/mL (SWV mode). Additionally, the sensor successfully detected enrofloxacin in real samples, expanding avenues for designing dual-mode signal amplification strategies.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cobre , Enrofloxacina , Nanopartículas del Metal , Platino (Metal) , Enrofloxacina/análisis , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Cobre/química , Platino (Metal)/química , Rutenio/química , Técnicas Electroquímicas/métodos , Límite de Detección , Oxidación-Reducción , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Catálisis , Antibacterianos/análisis , Antibacterianos/química
9.
Sci Total Environ ; 928: 172529, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631626

RESUMEN

Herein, a study for the first application of a hybridization chain reaction, a 1,8-naphthalimides-DNA (NDs) intercalator, and DNA-dependent Prussian blue nanoflowers@PtPd materials (PBNFs@PtPd) in the development of a fluorescence-electrochemical (FL-EC) aptasensor. This construction establishes an efficient sensing platform for the detection of procymidone (PCM). In the context of the described experiment, dual-mode detection is achieved through the generation of FL signals by an aptamer labeled with a Cy5 moiety and the formation of DPV signals by the modification of a thionine-appended 1,8-naphthalimide (Thi-NDs). In the presence of PCM, specific recognition occurs, followed by the utilization of magnetic separation technology to release DNA1 (S1) and aptamer-Cy5 (Apt-Cy5), subsequently introducing them onto both fluorescence and EC platforms. The presence of S1 effectively activates hybridization chain reaction (HCR) for the electrode surface, thereby significantly increasing the binding sites for Thi-NDs and consequently greatly amplifying the response signal of differential pulse voltammetry (DPV). The developed FL-EC dual-mode sensing platform demonstrates high sensitivity in the detection of PCM, with the detection limits of 0.173 µg·ml-1 (within the detection range of 500 pg·ml-1 to 500 ng·ml-1) and 0.074 ng·ml-1 (within the detection range of 100 pg·ml-1 to 100 ng·ml-1), respectively. The designed dual-mode sensor exhibits notable characteristics, including high selectivity, reproducibility, synergy, and reliable monitoring/capability for PCM in real samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Electroquímicas , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , ADN/análisis , Fluorescencia , Hibridación de Ácido Nucleico , Contaminantes Químicos del Agua/análisis , Límite de Detección
10.
Mikrochim Acta ; 191(5): 256, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598148

RESUMEN

A dual-signal ratiometric electrochemical aptasensor has been developed  for AFB1 detection using thionine/Au/zeolitic imidazolate framework-8 (Thi/Au/ZIF-8) nanomaterials and catalytic hairpin assembly (CHA) reaction. Thi/Au/ZIF-8 combined with DNA hairpin 2 (H2) was used as a signal probe. [Fe(CN)6]3-/4- was served as another signal probe, and the IThi/Au/ZIF-8/I[Fe(CN)6]3-/4- ratio was for the first time utilized to quantify AFB1. AFB1-induced CHA was used to expand the ratio of electrical signals. In the presence of AFB1, H2/Thi/Au/ZIF-8 bound to the electrode via CHA, enhanced  the current signal of Thi/Au/ZIF-8. H2 contained the DNA phosphate backbone hindered [Fe(CN)6]3-/4- redox reaction and resulted in a lower [Fe(CN)6]3-/4- current signal. This aptasensor exhibited high specificity for AFB1, a linear range of 0.1 pg mL-1 to 100 ng mL-1, and a detection limit of 0.089 pg mL-1. It demonstrated favorable sensitivity, selectivity, stability, and repeatability. The aptasensor was suitable for detecting AFB1 in peanuts and black tea and holds potential for real sample applications.


Asunto(s)
Aflatoxina B1 , Fenotiazinas , Zeolitas , Arachis , Catálisis , ADN
11.
Int J Biol Macromol ; 254(Pt 2): 127746, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923041

RESUMEN

Lateral flow immunoassay (LFIA) has been employed extensively for the rapid, accurate, and portable detection of foodborne toxins. Here, the platinum gold nanoflower core-shell (Pt@AuNF) nanozyme with excellent optical properties, good catalytic ability and controllable reaction conditions were prepared to effectively improve the performance of lateral flow immunoassay (LFIA) strips. The Pt@AuNF nanozyme and horseradish peroxidase (HRP) combined with monoclonal antibody were used as signal probes based on the dual enzymes catalytic signal amplification strategy to detect Zearalenone sensitively. Dual enzymes catalyze the decomposition of hydrogen peroxide into hydroxyl radicals, and under the influence of hydroxyl radicals, colorless 3,3',5,5' -tetramethylbenzidine (TMB) is oxidized to blue ox-TMB, which is superimposed on the strips for signal amplification to broaden the detection range. The limit of detection (LOD) of the Pt@AuNF-HRP labeled LFIA strips after signal amplification was 0.052 ng/mL, and the detection range was 0.052-7.21 ng/mL. Compared with the Pt@AuNF labeled strips, while reducing the probes amount by half to achieve antibody conservation, the detection range was expanded by 5-fold based on achieving improved sensitivity. The study provided a meaningful reference for expanding the detection range based on immunoassay.


Asunto(s)
Nanopartículas del Metal , Zearalenona , Peroxidasa de Rábano Silvestre , Límite de Detección , Inmunoensayo , Oro
12.
Anal Chem ; 96(1): 92-101, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38110328

RESUMEN

Herein, we synthesized anemone-like copper-based metal-organic frameworks (MOFs) loaded with gold-palladium nanoparticles (AuPd@Cu-MOFs) and polyethylenimine-reduced graphene oxide/gold-silver nanosheet composites (PEI-rGO/AuAg NSs) for the first time to construct the sensor and to detect T-2 toxin (T-2) using triple helix molecular switch (THMS) and signal amplification by swing-arm robot. The aptasensor used PEI-rGO/hexagonal AuAg NSs as the electrode modification materials and anemone-like AuPd@Cu-MOFs as the signal materials. The prepared PEI-rGO/hexagonal AuAg NSs had a large specific surface area, excellent electrical conductivity, and good stability, which successfully improved the electrochemical performance of the sensors. The AuPd@Cu-MOFs with high porosity provided a great deal of attachment sites for the signaling molecule thionine (Thi), thereby increasing the signal response. The aptasensor developed in this study demonstrated a remarkable detection limit of 0.054 fg mL-1 under optimized conditions. Furthermore, the successful detection of T-2 in real samples was achieved using the fabricated sensor. The simplicity of the THMS-based method, which entails modifying the aptamer sequence, allows for easy adaptation to different target analytes. Thus, the sensor holds immense potential for applications in quality supervision and food safety.


Asunto(s)
Anemone , Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Estructuras Metalorgánicas , Robótica , Toxina T-2 , Estructuras Metalorgánicas/química , Cobre/química , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Paladio , Grafito/química , Oro/química , Técnicas Electroquímicas/métodos , Límite de Detección , Técnicas Biosensibles/métodos
13.
Biosens Bioelectron ; 241: 115690, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716157

RESUMEN

Herein, a novel magneto-mediated electrochemical aptasensor using the signal amplification technologies of DNAzyme motor and electrocatalyst for vanilla (VAN) detection was fabricated. The D/B duplex, formed by the DNAzyme motor that was each silenced by a blocker, and hairpin DNA1 (H1) containing adenosine ribonucleotide (rA) site were tethered on the sites of the gold nanoparticles@hollow porphyrinic-Metal-organic framework/polyethyleneimine-reduced graphene oxide (AuHPCN-222/PEI-rGO)-modified gold electrode (AuE). Then, after homogeneous and specific recognition in the presence of the VAN, trigger DNA was released and enriched by magnetic separation technique and introduced to the sensing platform to activate the DNAzyme motor, which efficiently improved target recognition capability and avoided the obstacle of multiple DNA strands tangling. More interestingly, the activated DNAzyme motor could repeatedly bind to and cleave H1 in the presence of Mg2+, leading to the exposure of a plethora of capture probes. The thionine (Thi) functionalized hairpin DNA2 (H2)-Pt@Ni-Co as signal probes could hybridize with capture probes. Additionally, the Pt@Ni-Co electrocatalysts presented catalytic activity towards Thi to obtain stronger electrochemical signals. VAN with concentrations ranging from 1 × 10-6 to 10 µM was determined and a detection limit was down to 0.15 pM. The designed electrochemical sensor was highly selective with specificity, stability, reproducibility, and reliable capability for monitoring the VAN in real samples.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Nanopartículas del Metal , Vanilla , Oro , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Límite de Detección , ADN , Técnicas Electroquímicas/métodos
14.
J Mater Chem B ; 11(36): 8679-8688, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37641527

RESUMEN

Herein, we have used DNA-silver nanocluster (DNA-AgNC) signal probes with both electrochemical and fluorescent signals for the first time to construct an electrochemical-fluorescent dual-mode sensor. The sensor has an easy-to-prepare dual-signal property combined with the magnetic separation technique for dual-mode detection of ochratoxin A (OTA). In the absence of OTA, the DNA strand used to synthesize AgNCs was not available in the system after magnetic separation. DNA-AgNCs probes could not be synthesized in the system, resulting in low fluorescence and electrochemical signals. In the presence of OTA, it led to the shedding of sulfhydryl-modified and cytosine-rich DNA (C-DNA). DNA-AgNCs probes with high fluorescence and electrochemical signals were formed by adding AgNO3 and NaBH4 to the supernatant after magnetic separation. Dual-mode detection of OTA was achieved by the signal response of fluorescence and electrochemistry. The detection ranges were 2.5 × 10-4-50 ng mL-1 and 2.5 × 10-4-25 ng mL-1 in the fluorescence mode and electrochemical mode with detection limits of 0.11 pg mL-1 and 0.025 pg mL-1, respectively. Meanwhile, the dual-mode sensor displayed better specificity, repeatability and reproducibility than conventional electrochemical and fluorescent single-mode sensors. The results of the spiked peanut and wheat flour detection showed that the fluorescence and electrochemical modes of the sensor exhibited satisfactory average recoveries.


Asunto(s)
Harina , Triticum , Reproducibilidad de los Resultados , Colorantes , Citosina , ADN
15.
Mikrochim Acta ; 190(8): 313, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37470836

RESUMEN

A novel three-dimensional (3D) porous nitrogen-sulfur co-doped carbon (N-S-C) mesh was synthesized and used for the first time as the quenching material to construct a fluorescent aptasensor for ochratoxin A (OTA) detection. The fluorescent aptasensor with enzyme-free signal amplification strategy was developed by using cDNA as a promoter to trigger hybridization chain reaction (HCR), which effectively improved the sensitivity of this aptasensor. In the absence of OTA, 3D porous N-S-C mesh can adsorb carboxyfluorescein FAM-labeled hairpin DNA1 (H1-FAM) and hairpin DNA2 (H2) and quench the fluorescence of FAM. In the presence of the OTA, the OTA specifically binds to the aptamer strand and the DNA duplex undergoes dissociation. The released cDNA in turn serves as a promoter for HCR, and the strand assembly of H1-FAM and H2 is triggered by the promoter to generate long-strand DNA polymers via HCR, resulting in an increasing fluorescent signal. Under optimal conditions, there was a good linear relationship between lgCOTA and fluorescence intensity difference in the range 0.01-500 ng/mL (R2 = 0.993), and the detection limit was 2.7 pg/mL. The designed sensor platform was applied to determine spiked OTA in peanut, wheat flour, corn flour, black tea, and wine with recoveries in the range of 94.4-119.6%.


Asunto(s)
Aptámeros de Nucleótidos , Carbono , ADN Complementario , Nitrógeno , Porosidad , Harina , Triticum , ADN , Colorantes
16.
Bioelectrochemistry ; 152: 108452, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37137224

RESUMEN

The presence of heavy metals in the ecological environment is a serious threat to human health. Therefore, it is very important to establish a simple and sensitive method for the detection of heavy metals. Currently, most of the methods are single-channel sensing, and these methods are prone to false-positive signals, which reduces the accuracy. In this work, Pb2+-DNAzyme was immobilized on magnetic beads (MBs) using a linkage of biotin and streptavidin and successfully applied to the construction of a fluorescent/electrochemical dual-mode (DM) biosensor. The supernatant after magnetic separation formed a double strand on the electrode, which was combined with methylene blue (MB) for electrochemical detection (EC). At the same time, FAM-d was added to the precipitate, and after magnetic separation, the supernatant was subjected to fluorescent detection (FL). Under optimal conditions, the signal response of the constructed dual-mode biosensor showed a good linear relationship with the concentration of Pb2+. The DNAzyme-based dual-mode biosensor achieved sensitive and selective detection of Pb2+ with good accuracy and reliability, opening a new way for the development of biosensing strategies for the detection of Pb2+. More importantly, the sensor has high sensitivity and accuracy for the detection of Pb2+ in actual sample analysis.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Humanos , Plomo , Reproducibilidad de los Resultados , Límite de Detección , Técnicas Biosensibles/métodos
17.
Sci Total Environ ; 875: 162561, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870493

RESUMEN

Vomitoxin (DON) residues in grains are of great concern to public health. Herein, a label-free aptasensor was constructed to detect DON distributed in grains. Cerium-based metal-organic framework composite gold nanoparticles (CeMOF@Au) were used as substrate materials to facilitate electron transfer and provided more binding sites for DNA. The separation of DON-aptamer (Apt) complex and cDNA was achieved by magnetic separation technique based on magnetic beads (MBs), ensuring the specificity of the aptasensor. Exonuclease III (Exo III)-assisted cDNA cycling process strategy would be triggered when cDNA was separated and introduced to the sensing interface for further signal amplification. Under optimal conditions, the constructed aptasensor presented a wide detection range from 1 × 10-8 mg·mL-1 to 5 × 10-4 mg·mL-1 for DON, and the detection limit was 1.79 × 10-9 mg·mL-1, including a satisfactory recovery in cornmeal sample spiked with DON. The results showed that the proposed aptasensor had high reliability and promising application potential in detecting DON.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , ADN Complementario , Oro/química , Reproducibilidad de los Resultados , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas , Límite de Detección
18.
Mikrochim Acta ; 190(4): 120, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36884101

RESUMEN

T-2 toxin is the most potent and toxic mycotoxin, produced by various Fusarium species that can potentially affect human health, and widely exists in field crops and stored grain. In this work, an electrochemical aptasensor with nonenzymatic signal amplification strategy for the detection of T-2 toxin is presented, using noble metal nanocomposites and catalytic hairpin assembly as signal amplification strategy. Silver palladium nanoflowers and gold octahedron nanoparticles@graphene oxide nanocomposites are used for synergistic amplification of electrical signals. Simultaneously, the catalytic hairpin assembly strategy based on artificial molecular technology was introduced to further amplify the signal. Under optimal conditions, T-2 toxin was measured within a linear concentration range 1 × 10-2 ~ 1 × 104 pg·mL-1 with an extremely low detection limit of 6.71 fg·mL-1. The aptasensor exhibited high sensitivity, good selectivity, satisfactory stability, and excellent reproducibility. Moreover, this method had high accuracy in detecting T-2 toxin in beer sample. The encouraging results show the potential application in foodstuff analysis. A dual signal amplification electrochemical biosensor for the detection of T-2 toxins was constructed, through the signal amplification of noble metal nanomaterials and CHA strategy.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Toxina T-2 , Humanos , Reproducibilidad de los Resultados , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Límite de Detección , Nanocompuestos/química
19.
Anal Chim Acta ; 1246: 340888, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36764774

RESUMEN

Mycotoxins contaminated in agricultural products are often highly carcinogenic and genotoxic to humans. With the streamlining of the food industry chain and the improvement of food safety requirements, the traditional laboratory testing mode is constantly challenged due to the expensive equipment, complex operation steps, and lag in testing results. Therefore, rapid detection methods are urgently needed in the food safety system. This review focuses on the latest strategies that can achieve rapid and on-site testing, with particular attention to the nanomaterials integrated biosensors. To provide researchers with the latest trends and inspiration in the field of rapid detection, we summarize several strategies suitable for point of care testing (POCT) of mycotoxins, including enzyme-linked immunoassay (ELISA), lateral flow assay (LFA), fluorescence, electrochemistry, and colorimetry assay. POCT-based strategies are all developing towards intelligence and portability, especially when combined with smartphones, making it easier to read signals for intuitive access and analysis of test data. Detection performance of the devices has also improved considerably with the integration of biosensors and nanomaterials.


Asunto(s)
Técnicas Biosensibles , Micotoxinas , Nanoestructuras , Humanos , Sistemas de Atención de Punto , Micotoxinas/análisis , Pruebas en el Punto de Atención , Inmunoensayo/métodos
20.
Anal Methods ; 15(10): 1306-1314, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36805075

RESUMEN

Herein, an electrochemical biosensor was developed based on a magnetic separation strategy for the sensitive detection of the heavy metal Pb2+. The specific binding of Pb2+ and the aptamer (Apt) is used to trigger the release of the complementary chain (cDNA) on the magnetic bead system. The cDNA completes base complementary pairing with hairpins HP1 and HP2 at the electrode to form a Y-DNA structure. Then, the Y-DNA runs continuously with the assistance of the signal tag methylene blue (MB) and the current signal increases. However, in the absence of Pb2+, cDNA cannot be released and the Y-DNA structure cannot be formed on the electrode, resulting in a relatively low current signal. Under the optimal experimental conditions, the reduced peak current difference (ΔI) showed a good linear relationship with lg CPb2+ between 0.1 and 1000 nM, with a detection limit of 5.9 pM. In addition, the stability, reproducibility and detection capability of the sensors were investigated with satisfactory results.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Metales Pesados , ADN Complementario , Reproducibilidad de los Resultados , Plomo , Técnicas Electroquímicas/métodos , Límite de Detección , ADN/química , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Fenómenos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...