Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(6): e11489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840586

RESUMEN

Phenotype plasticity and evolution adaptations are the two main ways in which allow populations to deal with environmental changes, but the potential relationship between them remains controversial. Using a reciprocal transplant approach with cattle adapted to the Tibetan Plateau and adjacent lowlands, we aim to investigate the relative contributions of evolutionary processes and phenotypic plasticity in driving both phenotypic and transcriptomic changes under natural conditions. We observed that while numerous genetic transcriptomic changes were evident during the forward adaptation to highland environments, plastic changes predominantly facilitate the transformation of transcriptomes into a preferred state when Tibetan cattle are reintroduced to lowland habitats. Genes with ancestral plasticity are generally reversed by evolutionary adaptations and show a closer expression level to the ancestral stage in evolved Tibetan cattle. A similar trend was also observed at the phenotypes level, with a majority of biochemical and hemorheology phenotypes showing a tendency to revert to their ancestral patterns, suggesting the restoration of ancestral expression levels is a widespread evolutionary trend during adaptation. The findings of our study contribute to the debate regarding the relative contributions of plasticity and genetic changes in mammal environment adaptation. Furthermore, we highlight that the restoration of ancestral phenotypes represents a general pattern in cattle new environment adaptation.

2.
PeerJ ; 11: e16010, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719116

RESUMEN

Background: Previous studies have discussed the effects of grazing and house feeding on yaks during the cold season when forage is in short supply, but there is limited information on the effects of these feeding strategies on Jersey cows introduced to the Tibetan Plateau. The objective of this study was to use genomics and metabolomics analyses to examine changes in rumen microbiology and organism metabolism of Jersey cows with different feeding strategies. Methods: We selected 12 Jersey cows with similar body conditions and kept them for 60 days under grazing (n = 6) and house-feeding (n = 6) conditions. At the end of the experiment, samples of rumen fluid and serum were collected from Jersey cows that had been fed using different feeding strategies. The samples were analyzed for rumen fermentation parameters, rumen bacterial communities, serum antioxidant and immunological indices, and serum metabolomics. The results of the study were examined to find appropriate feeding strategies for Jersey cows during the cold season on the Tibetan plateau. Results: The results of rumen fermentation parameters showed that concentrations of acetic acid, propionic acid, and ammonia nitrogen in the house-feeding group (Group B) were significantly higher than in the grazing group (Group G) (P < 0.05). In terms of the rumen bacterial community 16S rRNA gene, the Chao1 index was significantly higher in Group G than in Group B (P = 0.038), while observed species, Shannon and Simpson indices were not significantly different from the above-mentioned groups (P > 0.05). Beta diversity analysis revealed no significant differences in the composition of the rumen microbiota between the two groups. Analysis of serum antioxidant and immune indices showed no significant differences in total antioxidant capacity between Group G and Group B (P > 0.05), while IL-6, Ig-M , and TNF-α were significantly higher in Group G than in Group B (P < 0.05). LC-MS metabolomics analysis of serum showed that a total of 149 major serum differential metabolites were found in Group G and Group B. The differential metabolites were enriched in the metabolic pathways of biosynthesis of amino acids, protein digestion and absorption, ABC transporters, aminoacyl-tRNA biosynthesis, mineral absorption, and biosynthesis of unsaturated fatty acids. These data suggest that the house-feeding strategy is more beneficial to improve the physiological state of Jersey cows on the Tibetan Plateau during the cold season when forages are in short supply.


Asunto(s)
Antioxidantes , Rumen , Animales , Femenino , Bovinos , ARN Ribosómico 16S/genética , Tibet , Metaboloma
3.
Front Genet ; 13: 816379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711927

RESUMEN

Understanding the genetic diversity in Xiangxi cattle may facilitate our efforts toward further breeding programs. Here we compared 23 Xiangxi cattle with 78 published genomes of 6 worldwide representative breeds to characterize the genomic variations of Xiangxi cattle. Based on clustering models in population structure analysis, we displayed that Xiangxi cattle had a mutual genome ancestor with Chinese indicine, Indian indicine, and East Asian taurine. Population genetic diversity was analyzed by four methods (nucleotide diversity, inbreeding coefficient, linkage disequilibrium decay and runs of homozygosity), and we found that Xiangxi cattle had higher genomic diversity and weaker artificial selection than commercial breed cattle. Using four testing methods (θπ, CLR, F ST, and XP-EHH), we explored positive selection regions harboring genes in Xiangxi cattle, which were related to reproduction, growth, meat quality, heat tolerance, and immune response. Our findings revealed the extent of sequence variation in Xiangxi cattle at the genome-wide level. All of our fruitful results can bring about a valuable genomic resource for genetic studies and breed protection in the future.

4.
Front Genet ; 13: 833475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422847

RESUMEN

Dengchuan cattle are the only dairy yellow cattle and endangered cattle among Yunnan native cattle breeds. However, its genetic background remains unclear. Here, we performed whole-genome sequencing of ten Dengchuan cattle. Integrating our data with the publicly available data, Dengchuan cattle were observed to be highly interbred than other cattle in the dataset. Furthermore, the positive selective signals were mainly manifested in candidate genes and pathways related to milk production, disease resistance, growth and development, and heat tolerance. Notably, five genes (KRT39, PGR, KRT40, ESR2, and PRKACB) were significantly enriched in the estrogen signaling pathway. Moreover, the missense mutation in the PGR gene (c.190T > C, p.Ser64Pro) showed a homozygous mutation pattern with higher frequency (83.3%) in Dengchuan cattle. In addition, a large number of strong candidate regions matched genes and QTLs related to milk yield and composition. Our research provides a theoretical basis for analyzing the genetic mechanism underlying Dengchuan cattle with excellent lactation and adaptability, crude feed tolerance, good immune performance, and small body size and also laid a foundation for genetic breeding research of Dengchuan cattle in the future.

5.
Front Genet ; 13: 833503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391795

RESUMEN

The location on the Yunnan border with Myanmar and its unique cultural landscape has shaped Lincang humped cattle over time. In the current study, we investigated the genetic characteristics of 22 Lincang humped cattle using whole-genome resequencing data. We found that Lincang humped cattle derived from both Indian indicine and Chinese indicine cattle depicted higher levels of genomic diversity. Based on genome-wide scans, candidate genomic regions were identified that were potentially involved in local thermal and humid environmental adaptions, including genes associated with the body size (TCF12, SENP2, KIF1C, and PFN1), immunity (LIPH, IRAK3, GZMM, and ELANE), and heat tolerance (MED16, DNAJC8, HSPA4, FILIP1L, HELB, BCL2L1, and TPX2). Missense mutations were detected in candidate genes IRAK3, HSPA4, and HELB. Interestingly, eight missense mutations observed in the HELB gene were specific to the indicine cattle pedigree. These mutations may reveal differences between indicine and taurine cattle adapted to variable climatic conditions. Our research provides new insights into the genetic characteristics of Lincang humped cattle representing Lincang and Pu'er areas as an important channel for the migration of Indian indicine from domestication centers toward southwestern China.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA