Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 68: 102962, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38029455

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Selenio , Humanos , Páncreas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Peroxidación de Lípido , Neoplasias Pancreáticas
2.
Circ Res ; 132(7): 828-848, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36883446

RESUMEN

BACKGROUND: Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac ß-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing. METHODS: Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with ß-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans. RESULTS: We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth. CONCLUSIONS: We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors.


Asunto(s)
AMP Cíclico , Miocitos Cardíacos , Humanos , Proteómica , Hidrolasas Diéster Fosfóricas , Hipertrofia , Adrenérgicos
3.
Cardiovasc Res ; 118(6): 1506-1519, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33970224

RESUMEN

AIMS: Guanylyl cyclase-B (GC-B; natriuretic peptide receptor-B, NPR-B) stimulation by C-type natriuretic peptide (CNP) increases cGMP and causes a lusitropic and negative inotropic response in adult myocardium. These effects are not mimicked by NPR-A (GC-A) stimulation by brain natriuretic peptide (BNP), despite similar cGMP increase. More refined methods are needed to better understand the mechanisms of the differential cGMP signalling and compartmentation. The aim of this work was to measure cGMP near proteins involved in regulating contractility to understand compartmentation of cGMP signalling in adult cardiomyocytes. METHODS AND RESULTS: We constructed several fluorescence resonance energy transfer (FRET)-based biosensors for cGMP subcellularly targeted to phospholamban (PLB) and troponin I (TnI). CNP stimulation of adult rat cardiomyocytes increased cGMP near PLB and TnI, whereas BNP stimulation increased cGMP near PLB, but not TnI. The phosphodiesterases PDE2 and PDE3 constrained cGMP in both compartments. Local receptor stimulation aided by scanning ion conductance microscopy (SICM) combined with FRET revealed that CNP stimulation both in the t-tubules and on the cell crest increases cGMP similarly near both TnI and PLB. In ventricular strips, CNP stimulation, but not BNP, induced a lusitropic response, enhanced by inhibition of either PDE2 or PDE3, and a negative inotropic response. In cardiomyocytes from heart failure rats, CNP increased cGMP near PLB and TnI more pronounced than in cells from sham-operated animals. CONCLUSION: These targeted biosensors demonstrate that CNP, but not BNP, increases cGMP near TnI in addition to PLB, explaining how CNP, but not BNP, is able to induce lusitropic and negative inotropic responses.


Asunto(s)
Técnicas Biosensibles , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico , Péptido Natriurético Tipo-C , Animales , Factor Natriurético Atrial/farmacología , GMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Guanilato Ciclasa/metabolismo , Contracción Miocárdica , Péptido Natriurético Encefálico/metabolismo , Péptido Natriurético Tipo-C/metabolismo , Ratas , Receptores del Factor Natriurético Atrial/metabolismo , Troponina I
4.
Cells ; 10(2)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671541

RESUMEN

The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization.


Asunto(s)
AMP Cíclico/metabolismo , Enfermedades Neurodegenerativas/genética , Envejecimiento , Humanos , Transducción de Señal
5.
Cell Death Differ ; 28(8): 2436-2449, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33742135

RESUMEN

Autophagy is a highly regulated degradative process crucial for maintaining cell homeostasis. This important catabolic mechanism can be nonspecific, but usually occurs with fine spatial selectivity (compartmentalization), engaging only specific subcellular sites. While the molecular machines driving autophagy are well understood, the involvement of localized signaling events in this process is not well defined. Among the pathways that regulate autophagy, the cyclic AMP (cAMP)/protein kinase A (PKA) cascade can be compartmentalized in distinct functional units called microdomains. However, while it is well established that, depending on the cell type, cAMP can inhibit or promote autophagy, the role of cAMP/PKA microdomains has not been tested. Here we show not only that the effects on autophagy of the same cAMP elevation differ in different cell types, but that they depend on a highly complex sub-compartmentalization of the signaling cascade. We show in addition that, in HT-29 cells, in which autophagy is modulated by cAMP rising treatments, PKA activity is strictly regulated in space and time by phosphatases, which largely prevent the phosphorylation of soluble substrates, while membrane-bound targets are less sensitive to the action of these enzymes. Interestingly, we also found that the subcellular distribution of PKA type-II regulatory PKA subunits hinders the effect of PKA on autophagy, while displacement of type-I regulatory PKA subunits has no effect. Our data demonstrate that local PKA activity can occur independently of local cAMP concentrations and provide strong evidence for a link between localized PKA signaling events and autophagy.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Animales , Autofagia , Ratones , Fosforilación , Transfección
6.
Aging Clin Exp Res ; 33(5): 1367-1370, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-31925726

RESUMEN

Mitochondria constantly contribute to the cell homeostasis and this, during the lifespan of a cell, takes its toll. Indeed, the functional decline of mitochondria appears correlated to the aging of the cell. The initial idea was that excessive production of reactive oxygen species (ROS) by functionally compromised mitochondria was the causal link between the decline of the organelle functions and cellular aging. However, in recent years accumulating evidence suggests that the contribution of mitochondria to cellular aging goes beyond ROS production. In this short review, we discuss how intracellular signalling, specifically the cAMP-signalling cascade, is involved in the regulation of mitochondrial functions and potentially in the processes that link mitochondrial status to cellular aging.


Asunto(s)
Longevidad , Mitocondrias , Comunicación , Especies Reactivas de Oxígeno
7.
Prog Biophys Mol Biol ; 154: 30-38, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31266653

RESUMEN

Cyclic 3'-5' adenosine monophosphate (cAMP) is a key modulator of cardiac function. Thanks to the sophisticated organization of its pathway in distinct functional units called microdomains, cAMP is involved in the regulation of both inotropy and chronotropy as well as transcription and cardiac death. While visualization of cAMP microdomains can be achieved thanks to cAMP-sensitive FRET-based sensors, the molecular mechanisms through which cAMP-generating stimuli are coupled to distinct functional outcomes are not well understood. One possibility is that each stimulus activates multiple microdomains in order to generate a spatiotemporal code that translates into function. To test this hypothesis here we propose a series of experimental protocols that allow to simultaneously follow cAMP or Protein Kinase A (PKA)-dependent phosphorylation in different subcellular compartments of living cells. We investigate the responses of ß Adrenergic receptors (ß1AR and ß2AR) challenged with selective drugs that enabled us to measure the actions of each receptor independently. At the whole cell level, we used a combination of co-culture with selective ßAR stimulation and were able to molecularly separate cardiac fibroblasts from neonatal rat ventricular myocytes based on their cAMP responses. On the other hand, at the subcellular level, these experimental protocols allowed us to dissect the relative weight of ß1 and ß2 adrenergic receptors on cAMP signalling at the cytosol and outer mitochondrial membrane of NRVMs. We propose that experimental procedures that allow the collection of multiparametric data are necessary in order to understand the molecular mechanisms underlying the coupling between extracellular signals and cellular responses.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal , Línea Celular , AMP Cíclico/metabolismo , Espacio Extracelular/metabolismo , Humanos , Membranas Mitocondriales/metabolismo , Miocitos Cardíacos/citología
8.
Biochem Soc Trans ; 47(5): 1383-1392, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31670375

RESUMEN

3'-5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that modulates multiple cellular functions. It is now well established that cAMP can mediate a plethora of functional effects via a complex system of local regulatory mechanisms that result in compartmentalized signalling. The use of fluorescent probes to monitor cAMP in intact, living cells have been instrumental in furthering our appreciation of this ancestral and ubiquitous pathway and unexpected details of the nano-architecture of the cAMP signalling network are starting to emerge. Recent evidence shows that sympathetic control of cardiac contraction and relaxation is achieved via generation of multiple, distinct pools of cAMP that lead to differential phosphorylation of target proteins localized only tens of nanometres apart. The specific local control at these nanodomains is enabled by a distinct signalosome where effectors, targets, and regulators of the cAMP signal are clustered. In this review, we focus on recent advances using targeted fluorescent reporters for cAMP and how they have contributed to our current understanding of nanodomain cAMP signalling in the heart. We briefly discuss how this information can be exploited to design novel therapies and we highlight some of the questions that remain unanswered.


Asunto(s)
AMP Cíclico/metabolismo , Miocardio/metabolismo , Animales , Transferencia Resonante de Energía de Fluorescencia , Humanos , Fosforilación , Sistemas de Mensajero Secundario , Transducción de Señal
9.
Proc Natl Acad Sci U S A ; 115(28): E6497-E6506, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941564

RESUMEN

Evidence supporting the heterogeneity in cAMP and PKA signaling is rapidly accumulating and has been largely attributed to the localization or activity of adenylate cyclases, phosphodiesterases, and A-kinase-anchoring proteins in different cellular subcompartments. However, little attention has been paid to the possibility that, despite homogeneous cAMP levels, a major heterogeneity in cAMP/PKA signaling could be generated by the spatial distribution of the final terminators of this cascade, i.e., the phosphatases. Using FRET-based sensors to monitor cAMP and PKA-dependent phosphorylation in the cytosol and outer mitochondrial membrane (OMM) of primary rat cardiomyocytes, we demonstrate that comparable cAMP increases in these two compartments evoke higher levels of PKA-dependent phosphorylation in the OMM. This difference is most evident for small, physiological increases of cAMP levels and with both OMM-located probes and endogenous OMM proteins. We demonstrate that this disparity depends on differences in the rates of phosphatase-dependent dephosphorylation of PKA targets in the two compartments. Furthermore, we show that the activity of soluble phosphatases attenuates PKA-driven activation of the cAMP response element-binding protein while concurrently enhancing PKA-dependent mitochondrial elongation. We conclude that phosphatases can sculpt functionally distinct cAMP/PKA domains even in the absence of gradients or microdomains of this messenger. We present a model that accounts for these unexpected results in which the degree of PKA-dependent phosphorylation is dictated by both the subcellular distribution of the phosphatases and the different accessibility of membrane-bound and soluble phosphorylated substrates to the cytosolic enzymes.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Microdominios de Membrana/enzimología , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Microdominios de Membrana/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Ratas , Ratas Sprague-Dawley
10.
Diabetes ; 67(6): 1128-1139, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29563152

RESUMEN

Adrenaline is a powerful stimulus of glucagon secretion. It acts by activation of ß-adrenergic receptors, but the downstream mechanisms have only been partially elucidated. Here, we have examined the effects of adrenaline in mouse and human α-cells by a combination of electrophysiology, imaging of Ca2+ and PKA activity, and hormone release measurements. We found that stimulation of glucagon secretion correlated with a PKA- and EPAC2-dependent (inhibited by PKI and ESI-05, respectively) elevation of [Ca2+]i in α-cells, which occurred without stimulation of electrical activity and persisted in the absence of extracellular Ca2+ but was sensitive to ryanodine, bafilomycin, and thapsigargin. Adrenaline also increased [Ca2+]i in α-cells in human islets. Genetic or pharmacological inhibition of the Tpc2 channel (that mediates Ca2+ release from acidic intracellular stores) abolished the stimulatory effect of adrenaline on glucagon secretion and reduced the elevation of [Ca2+]i Furthermore, in Tpc2-deficient islets, ryanodine exerted no additive inhibitory effect. These data suggest that ß-adrenergic stimulation of glucagon secretion is controlled by a hierarchy of [Ca2+]i signaling in the α-cell that is initiated by cAMP-induced Tpc2-dependent Ca2+ release from the acidic stores and further amplified by Ca2+-induced Ca2+ release from the sarco/endoplasmic reticulum.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Epinefrina/metabolismo , Células Secretoras de Glucagón/metabolismo , Glucagón/metabolismo , Regulación hacia Arriba , Neuronas Adrenérgicas/citología , Neuronas Adrenérgicas/efectos de los fármacos , Neuronas Adrenérgicas/metabolismo , Animales , Animales no Consanguíneos , Canales de Calcio/química , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Inhibidores Enzimáticos/farmacología , Células Secretoras de Glucagón/citología , Células Secretoras de Glucagón/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Moduladores del Transporte de Membrana/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/efectos de los fármacos , Páncreas/inervación , Páncreas/metabolismo , Técnicas de Placa-Clamp , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/enzimología , Retículo Sarcoplasmático/metabolismo , Técnicas de Cultivo de Tejidos , Regulación hacia Arriba/efectos de los fármacos
11.
Elife ; 62017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28463107

RESUMEN

cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death.


Asunto(s)
Apoptosis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Dinaminas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Animales , Línea Celular , Humanos , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas
12.
Nat Commun ; 8: 15031, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425435

RESUMEN

Compartmentalized cAMP/PKA signalling is now recognized as important for physiology and pathophysiology, yet a detailed understanding of the properties, regulation and function of local cAMP/PKA signals is lacking. Here we present a fluorescence resonance energy transfer (FRET)-based sensor, CUTie, which detects compartmentalized cAMP with unprecedented accuracy. CUTie, targeted to specific multiprotein complexes at discrete plasmalemmal, sarcoplasmic reticular and myofilament sites, reveals differential kinetics and amplitudes of localized cAMP signals. This nanoscopic heterogeneity of cAMP signals is necessary to optimize cardiac contractility upon adrenergic activation. At low adrenergic levels, and those mimicking heart failure, differential local cAMP responses are exacerbated, with near abolition of cAMP signalling at certain locations. This work provides tools and fundamental mechanistic insights into subcellular adrenergic signalling in normal and pathological cardiac function.


Asunto(s)
Técnicas Biosensibles/métodos , AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacología , Secuencia de Aminoácidos , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , Isoproterenol/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Ratas Sprague-Dawley , Sarcómeros/metabolismo , Sarcómeros/fisiología , Homología de Secuencia de Aminoácido
14.
Sci Transl Med ; 8(340): 340ra74, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27225184

RESUMEN

Atrial fibrillation (AF) is a growing public health burden, and its treatment remains a challenge. AF leads to electrical remodeling of the atria, which in turn promotes AF maintenance and resistance to treatment. Although remodeling has long been a therapeutic target in AF, its causes remain poorly understood. We show that atrial-specific up-regulation of microRNA-31 (miR-31) in goat and human AF depletes neuronal nitric oxide synthase (nNOS) by accelerating mRNA decay and alters nNOS subcellular localization by repressing dystrophin translation. By shortening action potential duration and abolishing rate-dependent adaptation of the action potential duration, miR-31 overexpression and/or disruption of nNOS signaling recapitulates features of AF-induced remodeling and significantly increases AF inducibility in mice in vivo. By contrast, silencing miR-31 in atrial myocytes from patients with AF restores dystrophin and nNOS and normalizes action potential duration and its rate dependency. These findings identify atrial-specific up-regulation of miR-31 in human AF as a key mechanism causing atrial dystrophin and nNOS depletion, which in turn contributes to the atrial phenotype begetting this arrhythmia. miR-31 may therefore represent a potential therapeutic target in AF.


Asunto(s)
Arritmias Cardíacas/metabolismo , Fibrilación Atrial/metabolismo , Distrofina/metabolismo , Atrios Cardíacos/metabolismo , MicroARNs/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Regulación de la Expresión Génica , Cabras , Humanos , Ratones , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Regulación hacia Arriba
15.
Circ Res ; 117(8): 707-19, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26243800

RESUMEN

RATIONALE: Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. OBJECTIVE: How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. METHODS AND RESULTS: Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. CONCLUSIONS: Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications.


Asunto(s)
Cardiomegalia/prevención & control , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Miocitos Cardíacos/enzimología , Sistemas de Mensajero Secundario , Adenoviridae/genética , Animales , Animales Recién Nacidos , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Masculino , Microdominios de Membrana/enzimología , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Fosforilación , Interferencia de ARN , Ratas Sprague-Dawley , Ratas Wistar , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de Tiempo , Transducción Genética , Transfección
16.
Hypertension ; 66(1): 190-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25916722

RESUMEN

Elevated B-type natriuretic peptide (BNP) regulates cGMP-phosphodiesterase activity. Its elevation is regarded as an early compensatory response to cardiac failure where it can facilitate sympathovagal balance and cardiorenal homeostasis. However, recent reports suggest a paradoxical proadrenergic action of BNP. Because phosphodiesterase activity is altered in cardiovascular disease, we tested the hypothesis that BNP might lose its efficacy by minimizing the action of cGMP on downstream pathways coupled to neurotransmission. BNP decreased norepinephrine release from atrial preparations in response to field stimulation and also significantly reduced the heart rate responses to sympathetic nerve stimulation in vitro. Using electrophysiological recording and fluorescence imaging, BNP also reduced the depolarization evoked calcium current and intracellular calcium transient in isolated cardiac sympathetic neurons. Pharmacological manipulations suggested that the reduction in the calcium transient was regulated by a cGMP/protein kinase G pathway. Fluorescence resonance energy transfer measurements for cAMP, and an immunoassay for cGMP, showed that BNP increased cGMP, but not cAMP. In addition, overexpression of phosphodiesterase 2A after adenoviral gene transfer markedly decreased BNP stimulation of cGMP and abrogated the BNP responses to the calcium current, intracellular calcium transient, and neurotransmitter release. These effects were reversed on inhibition of phosphodiesterase 2A. Moreover, phosphodiesterase 2A activity was significantly elevated in stellate neurons from the prohypertensive rat compared with the normotensive control. Our data suggest that abnormally high levels of phosphodiesterase 2A may provide a brake against the inhibitory action of BNP on sympathetic transmission.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/fisiología , Sistema de Conducción Cardíaco/enzimología , Hipertensión/enzimología , Péptido Natriurético Encefálico/farmacología , Sistema Nervioso Simpático/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , GMP Cíclico/fisiología , Proteínas Quinasas Dependientes de GMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiología , Frecuencia Cardíaca , Hipertensión/genética , Hipertensión/fisiopatología , Isatina/farmacología , Masculino , Péptido Natriurético Encefálico/fisiología , Neuronas/enzimología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores del Factor Natriurético Atrial/efectos de los fármacos , Receptores del Factor Natriurético Atrial/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Ganglio Estrellado/citología , Ganglio Estrellado/efectos de los fármacos , Ganglio Estrellado/fisiología , Sistema Nervioso Simpático/fisiología , Transmisión Sináptica/fisiología
17.
Methods Mol Biol ; 1294: 103-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25783880

RESUMEN

Genetically encoded biosensors that make use of fluorescence resonance energy transfer (FRET) are important tools for the study of compartmentalized cyclic nucleotide signaling in living cells. With the advent of germ line and tissue-specific transgenic technologies, the adult mouse represents a useful tool for the study of cardiovascular pathophysiology. The use of FRET-based genetically encoded biosensors coupled with this animal model represents a powerful combination for the study of cAMP signaling in live primary cardiomyocytes. In this chapter, we describe the steps required during the isolation, viral transduction, and culture of cardiomyocytes from an adult mouse to obtain reliable expression of genetically encoded FRET biosensors for the study of cAMP signaling in living cells.


Asunto(s)
Adenoviridae/genética , AMP Cíclico/metabolismo , Miocitos Cardíacos/citología , Transducción Genética , Animales , Técnicas Biosensibles/métodos , Técnicas de Imagen Cardíaca/métodos , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Vectores Genéticos/genética , Ratones , Miocitos Cardíacos/virología , Transducción de Señal
18.
J Cell Biol ; 198(4): 607-21, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22908311

RESUMEN

Previous work has shown that the protein kinase A (PKA)-regulated phosphodiesterase (PDE) 4D3 binds to A kinase-anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA-PDE4D3-AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Dominio Catalítico/fisiología , Centrosoma/fisiología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Proteínas del Citoesqueleto/metabolismo , Transducción de Señal/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Animales , Células CHO , Ciclo Celular/genética , Ciclo Celular/fisiología , Cricetinae , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Proteínas del Citoesqueleto/genética , Humanos
19.
Circ Res ; 111(6): 718-27, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22798524

RESUMEN

RATIONALE: Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthases (NOS). Oral BH4 supplementation preserves cardiac function in animal models of cardiac disease; however, the mechanisms underlying these findings are not completely understood. OBJECTIVE: To study the effect of myocardial transgenic overexpression of the rate-limiting enzyme in BH4 biosynthesis, GTP cyclohydrolase 1 (GCH1), on NOS activity, myocardial function, and Ca2+ handling. METHODS AND RESULTS: GCH1overexpression significantly increased the biopterins level in left ventricular (LV) myocytes but not in the nonmyocyte component of the LV myocardium or in plasma. The ratio between BH4 and its oxidized products was lower in mGCH1-Tg, indicating that a large proportion of the myocardial biopterin pool was oxidized; nevertheless, myocardial NOS1 activity was increased in mGCH1-Tg, and superoxide release was significantly reduced. Isolated hearts and field-stimulated LV myocytes (3 Hz, 35°C) overexpressing GCH1 showed a faster relaxation and a PKA-mediated increase in the PLB Ser16 phosphorylated fraction and in the rate of decay of the [Ca2+]i transient. RyR2 S-nitrosylation and diastolic Ca2+ leak were larger in mGCH1-Tg and ICa density was lower; nevertheless the amplitude of the [Ca2+]i transient and contraction did not differ between genotypes, because of an increase in the SR fractional release of Ca2+ in mGCH1-Tg myocytes. Xanthine oxidoreductase inhibition abolished the difference in superoxide production but did not affect myocardial function in either group. By contrast, NOS1 inhibition abolished the differences in ICa density, Ser16 PLB phosphorylation, [Ca2+]i decay, and myocardial relaxation between genotypes. CONCLUSIONS: Myocardial GCH1 activity and intracellular BH4 are a limiting factor for constitutive NOS1 and SERCA2A activity in the healthy myocardium. Our findings suggest that GCH1 may be a valuable target for the treatment of LV diastolic dysfunction.


Asunto(s)
Biopterinas/análogos & derivados , GTP Ciclohidrolasa/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Biopterinas/metabolismo , Biopterinas/farmacología , Calcio/metabolismo , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Femenino , GTP Ciclohidrolasa/genética , Corazón/efectos de los fármacos , Corazón/fisiología , Humanos , Immunoblotting , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Miocardio/citología , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Superóxidos/metabolismo
20.
Anim Reprod Sci ; 126(3-4): 265-70, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21783333

RESUMEN

To investigate Ca(2+) dynamics in earlier phases of follicular development we compared the resting [Ca(2+)](i) and tested the functional responses to agonist/antagonist of L-type voltage-operated calcium channels (VOCCs) in small follicles GCs from hens during oviposition (O-GCs) and forced molt (M-GCs), using the microspectrofluorimetric [Ca(2+)](i) imaging. O-GCs were obtained from prehierarchical follicles (F(6)-F(5)-F(4)<8mm). In basal and agonist/antagonist stimulated M-GCs we did not observe a change in the [Ca(2+)](i) under any of condition in all cells analyzed. Based on basal measurements we can distinguish three different patterns reflecting cells variability within O-GCs group: (a) 39% cells showed small oscillations and [Ca(2+)](i) was 108±11nM; (b) 36% cells displayed yet small oscillations and [Ca(2+)](i) was 167±14nM; (c) 25% were cells with repetitive irregular oscillations that peaked until 2 fold basal value and [Ca(2+)](i) very variable, was 248±41nM. In O-GCs L-type VOCCs stimuli displayed different effects on [Ca(2+)](i) for both treatment in three basal patterns. In our study we demonstrated: (1) at resting the [Ca(2+)](i) is low (111±5nM) in M-GCs and tend to increasing in prehierarchical O-GCs; (2) L-type Ca(2+) channels are functionally expressed in the major part of O-GCs whereas they are not activated nor inhibited in M-GCs and in a percentage of O-GCs; (3) there are three different cellular types in prehierarchical O-GCs that may be associated with increasing stages of follicular development, based on their Ca(2+) pathway. Therefore, the functional response of L-type Ca(2+) channels in cultured laying hen prehierarchical GCs may be correlated with the functional maturation phase of laying hens ovarian. We hypothesize that the L-type Ca(2+)-dependent signaling could have a critical role in the regulatory mechanisms hormone mediated in hen ovarian cycle.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Pollos/fisiología , Células de la Granulosa/fisiología , Oviposición/fisiología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Pollos/metabolismo , Femenino , Fluorometría/veterinaria , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Muda , Nifedipino/farmacología , Ovulación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA