Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2868, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570478

RESUMEN

Signal communication mechanisms within the human body rely on the transmission and modulation of action potentials. Replicating the interdependent functions of receptors, neurons and synapses with organic artificial neurons and biohybrid synapses is an essential first step towards merging neuromorphic circuits and biological systems, crucial for computing at the biological interface. However, most organic neuromorphic systems are based on simple circuits which exhibit limited adaptability to both external and internal biological cues, and are restricted to emulate only specific the functions of an individual neuron/synapse. Here, we present a modular neuromorphic system which combines organic spiking neurons and biohybrid synapses to replicate a neural pathway. The spiking neuron mimics the sensory coding function of afferent neurons from light stimuli, while the neuromodulatory activity of interneurons is emulated by neurotransmitters-mediated biohybrid synapses. Combining these functions, we create a modular connection between multiple neurons to establish a pre-processing retinal pathway primitive.


Asunto(s)
Interneuronas , Neuronas , Humanos , Neuronas/fisiología , Potenciales de Acción/fisiología , Neuronas Aferentes , Sinapsis/fisiología , Neurotransmisores
2.
Nat Commun ; 14(1): 7019, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945597

RESUMEN

Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.


Asunto(s)
Hipoxia , Oxígeno , Humanos , Hipoxia de la Célula , Fenómenos Fisiológicos Respiratorios
3.
Nature ; 613(7944): 496-502, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653571

RESUMEN

Organic electrochemical transistors (OECTs) and OECT-based circuitry offer great potential in bioelectronics, wearable electronics and artificial neuromorphic electronics because of their exceptionally low driving voltages (<1 V), low power consumption (<1 µW), high transconductances (>10 mS) and biocompatibility1-5. However, the successful realization of critical complementary logic OECTs is currently limited by temporal and/or operational instability, slow redox processes and/or switching, incompatibility with high-density monolithic integration and inferior n-type OECT performance6-8. Here we demonstrate p- and n-type vertical OECTs with balanced and ultra-high performance by blending redox-active semiconducting polymers with a redox-inactive photocurable and/or photopatternable polymer to form an ion-permeable semiconducting channel, implemented in a simple, scalable vertical architecture that has a dense, impermeable top contact. Footprint current densities exceeding 1 kA cm-2 at less than ±0.7 V, transconductances of 0.2-0.4 S, short transient times of less than 1 ms and ultra-stable switching (>50,000 cycles) are achieved in, to our knowledge, the first vertically stacked complementary vertical OECT logic circuits. This architecture opens many possibilities for fundamental studies of organic semiconductor redox chemistry and physics in nanoscopically confined spaces, without macroscopic electrolyte contact, as well as wearable and implantable device applications.

4.
ACS Nano ; 16(8): 12049-12060, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35939084

RESUMEN

Organic electrochemical transistors (OECTs) have recently attracted attention due to their high transconductance and low operating voltage, which makes them ideal for a wide range of biosensing applications. Poly-3,4-ethylenedioxythiophene:poly-4-styrenesulfonate (PEDOT:PSS) is a typical material used as the active channel layer in OECTs. Pristine PEDOT:PSS has poor electrical conductivity, and additives are typically introduced to improve its conductivity and OECT performance. However, these additives are mostly either toxic or not proven to be biocompatible. Herein, a biocompatible ionic liquid [MTEOA][MeOSO3] is demonstrated to be an effective additive to enhance the performance of PEDOT:PSS-based OECTs. The influence of [MTEOA][MeOSO3] on the conductivity, morphology, and redox process of PEDOT:PSS is investigated. The PEDOT:PSS/[MTEOA][MeOSO3]-based OECT exhibits high transconductance (22.3 ± 4.5 mS µm-1), high µC* (the product of mobility µ and volumetric capacitance C*) (283.80 ± 29.66 F cm-1 V-1 s-1), fast response time (∼40.57 µs), and excellent switching cyclical stability. Next, the integration of sodium (Na+) and potassium (K+) ion-selective membranes with the OECTs is demonstrated, enabling selective ion detection in the physiological range. In addition, flexible OECTs are designed for electrocardiography (ECG) signal acquisition. These OECTs have shown robust performance against physical deformation and successfully recorded high-quality ECG signals.


Asunto(s)
Técnicas Biosensibles , Líquidos Iónicos , Poliestirenos , Capacidad Eléctrica , Iones
5.
Chem Commun (Camb) ; 56(80): 11997-12000, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32896854

RESUMEN

The addition of amphiphilic triethylene glycol based corannulene molecules provides multiple Lewis basic sites that assist in perovskite grain growth, and improve the charge carrier collection and moisture resistance of perovskite solar cells. This study paves the way for utilization of more molecules from corannulene families in perovskite research.

6.
ACS Appl Mater Interfaces ; 12(30): 33979-33988, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32615752

RESUMEN

The major challenges in developing self-healable conjugated polymers for organic electrochemical transistors (OECTs) lie in maintaining good mixed electronic/ionic transport and the need for fast restoration to the original electronic and structural properties after the self-healing process. Herein, we provide the first report of an all-solid-state OECT that is self-healable and possesses good electrical performance, by utilizing a matrix of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and a nonionic surfactant, Triton X-100, as a channel and an ion-conducting poly(vinyl alcohol) hydrogel as a quasi-solid-state polymer electrolyte. The fabricated OECT exhibits high transconductance (maximum 54 mS), an on/off current ratio of ∼1.5 × 103, a fast response time of 6.8 ms, and good operational stability after 68 days of storage. Simultaneously, the OECT showed remarkable self-healing and ion-sensing behaviors and recovered ∼95% of its ion sensitivity after healing. These findings will contribute to the development of high-performance and robust OECTs for wearable bioelectronic devices.

7.
Nat Commun ; 11(1): 3211, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32587241

RESUMEN

Shallow feed-forward networks are incapable of addressing complex tasks such as natural language processing that require learning of temporal signals. To address these requirements, we need deep neuromorphic architectures with recurrent connections such as deep recurrent neural networks. However, the training of such networks demand very high precision of weights, excellent conductance linearity and low write-noise- not satisfied by current memristive implementations. Inspired from optogenetics, here we report a neuromorphic computing platform comprised of photo-excitable neuristors capable of in-memory computations across 980 addressable states with a high signal-to-noise ratio of 77. The large linear dynamic range, low write noise and selective excitability allows high fidelity opto-electronic transfer of weights with a two-shot write scheme, while electrical in-memory inference provides energy efficiency. This method enables implementing a memristive deep recurrent neural network with twelve trainable layers with more than a million parameters to recognize spoken commands with >90% accuracy.

8.
ACS Appl Mater Interfaces ; 12(18): 20757-20764, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32281363

RESUMEN

Organic electrochemical transistors (OECTs) with high transconductance and good operating stability in an aqueous environment are receiving substantial attention as promising ion-to-electron transducers for bioelectronics. However, to date, in most of the reported OECTs, the fabrication procedures have been devoted to spin-coating processes that may nullify the advantages of large-area and scalable manufacturing. In addition, conventional microfabrication and photolithography techniques are complicated or incompatible with various nonplanar flexible and curved substrates. Herein, we demonstrate a facile patterning method via spray deposition to fabricate ionic-liquid-doped poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based OECTs, with a high peak transconductance of 12.9 mS and high device stability over 4000 switching cycles. More importantly, this facile technique makes it possible to fabricate high-performance OECTs on versatile substrates with different textures and form factors such as thin permeable membranes, flexible plastic sheets, hydrophobic elastomers, and rough textiles. Overall, the results highlight the spray-deposition technique as a convenient route to prepare high-performing OECTs and will contribute to the translation of OECTs into real-world applications.

9.
Adv Mater ; 32(7): e1906976, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31912946

RESUMEN

The recent emergence of lead halide perovskites as ionic-electronic coupled semiconductors motivates the investigation of alternative solution-processable materials with similar modulatable ionic and electronic transport properties. Here, a novel semiconductor-cubic NaSbS2 -for ionic-electronic coupled transport is investigated through a combined theoretical and experimental approach. The material exhibits mixed ionic-electronic conductivity in inert atmosphere and superionic conductivity in humid air. It is shown that post deposition electronic reconfigurability in this material enabled by an electric field induces ionic segregation enabling a switchable photovoltaic effect. Utilizing post-perturbation of the ionic composition of the material via electrical biasing and persistent photoconductivity, multistate memristive synapses with higher-order weight modulations are realized for neuromorphic computing, opening up novel applications with such ionic-electronic coupled materials.

10.
ACS Appl Mater Interfaces ; 11(31): 27727-27734, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31304736

RESUMEN

Growing a monocrystalline layer of lead halide perovskites directly over substrates is necessary to completely harness their stellar properties in optoelectronic devices, as the single crystals of these materials are extremely brittle. We study the crystallization mechanism of perovskites by antisolvent vapor diffusion to its precursor solution and find that heterogeneous nucleation prevails in the process, with the crystallization dish walls providing the energy to overcome the nucleation barrier. By perturbing the system using sonication, we are able to introduce homogeneously nucleated seed crystals in the precursor solution. These seeds lead to the growth of closely packed crystals over surface-modified substrates kept in the precursor solution. This crystallization process is substrate independent and scalable and can be utilized to fabricate planar optoelectronic devices. We demonstrate a methylammonium lead iodide planar crystal photoconductor with a colossal detectivity of 1.48 × 1013 Jones.

11.
ACS Appl Mater Interfaces ; 11(30): 27064-27072, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31265238

RESUMEN

Hybrid graphene-perovskite photodetectors embrace the excellent photoabsorption properties of perovskites and high carrier mobility of graphene in a single device. Here, we demonstrate the integration of halide-ion-exchanged CsPbBrxI3-x nanocrystals (NCs) as a photoabsorber and graphene as a transport layer. The NCs conform to a cubic lattice structure and exhibit an optical band gap of 1.93 eV. The hybrid device attained a maximum responsivity of 1.13 × 104 A/W and specific detectivity of 1.17 × 1011 Jones in low light intensity (∼80 µW/cm2). Specifically, an ultrahigh photoconductive gain of 9.32 × 1010 is attained because of fast hole transit time in the graphene transistor and long recombination lifetime in the perovskite NCs simultaneously. The phototransistor also shows good stability and can maintain ∼95% of the photocurrent under continuous illumination over 5 h and ∼82% under periodic illumination over 37 h. Our results also revealed that the common issue of ion separation and segregated halide domains in mixed halide perovskite NCs do not occur under low light intensities. The intensive degradation of CsPbBrxI3-x NCs is only observed under stronger light excitation (≥55 mW/cm2), reflecting as emission shifts. Our work establishes the use of fully inorganic perovskite NCs as highly stable photodetectors with high responsivity and low power light detection.

12.
Adv Mater ; 31(2): e1805544, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30417445

RESUMEN

Organic electrochemical transistors (OECTs) are highly attractive for applications ranging from circuit elements and neuromorphic devices to transducers for biological sensing, and the archetypal channel material is poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS. The operation of OECTs involves the doping and dedoping of a conjugated polymer due to ion intercalation under the application of a gate voltage. However, the challenge is the trade-off in morphology for mixed conduction since good electronic charge transport requires a high degree of ordering among PEDOT chains, while efficient ion uptake and volumetric doping necessitates open and loose packing of the polymer chains. Ionic-liquid-doped PEDOT:PSS that overcomes this limitation is demonstrated. Ionic-liquid-doped OECTs show high transconductance, fast transient response, and high device stability over 3600 switching cycles. The OECTs are further capable of having good ion sensitivity and robust toward physical deformation. These findings pave the way for higher performance bioelectronics and flexible/wearable electronics.

13.
ACS Appl Mater Interfaces ; 9(49): 43004-43012, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29160686

RESUMEN

Biomaterials have been attracting attention as a useful building block for biocompatible and bioresorbable electronics due to their nontoxic property and solution processability. In this work, we report the integration of biocompatible keratin from human hair as dielectric layer for organic thin-film transistors (TFTs), with high performance, flexibility, and transient property. The keratin dielectric layer exhibited a high capacitance value of above 1.27 µF/cm2 at 20 Hz due to the formation of electrical double layer. Fully solution-processable TFTs based on p-channel poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b]dithiophen-2-yl)-alt[1,2,5]thiadiazolo[3,4-c]-pyridine] (PCDTPT) and keratin dielectric exhibited high electrical property with a saturation field-effect mobility of 0.35 cm2/(Vs) at a low gate bias of -2 V. We also successfully demonstrate flexible TFTs, which exhibited good mechanical flexibility and electrical stability under bending strain. An artificial electronic synaptic PCDTPT/keratin transistor was also realized and exhibited high-performance synaptic memory effects via simple operation of proton conduction in keratin. An added functionality of using keratin as a substrate was also presented, where similar PCDTPT TFTs with keratin dielectric were built on top of keratin substrate. Finally, we observed that our prepared devices can be degraded in ammonium hydroxide solution, establishing the feasibility of keratin layer as various components of transient electrical devices, including as a substrate and dielectric layer.


Asunto(s)
Queratinas Específicas del Pelo/química , Capacidad Eléctrica , Electricidad , Humanos , Transistores Electrónicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA