Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1356828, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694807

RESUMEN

Introduction: Deep investigations of host-associated microbiota can illuminate microbe-based solutions to improve production in an unprecedented manner. The poor larval survival represents the critical bottleneck in sustainable marine aquaculture practices. However, little is known about the microbiota profiles and their governing eco-evolutionary processes of the early life stages of marine teleost, impeding the development of suitable beneficial microbial management strategies. The study provides first-hand mechanistic insights into microbiota and its governing eco-evolutionary processes in early life stages of a tropical marine teleost model, Trachinotus blochii. Methods: The microbiota profiles and their dynamics from the first day of hatching till the end of metamorphosis and that of fingerling's gut during the routine hatchery production were studied using 16S rRNA amplicon-based high-throughput sequencing. Further, the relative contributions of various external factors (rearing water, live feed, microalgae, and formulated feed) to the microbiota profiles at different ontogenies was also analyzed. Results: A less diverse but abundant core microbial community (~58% and 54% in the whole microbiota and gut microbiota, respectively) was observed throughout the early life stages, supporting 'core microbiota' hypothesis. Surprisingly, there were two well-differentiated clusters in the whole microbiota profiles, ≤10 DPH (days post-hatching) and > 10 DPH samples. The levels of microbial taxonomic signatures of stress indicated increased stress in the early stages, a possible explanation for increased mortality during early life stages. Further, the results suggested an adaptive mechanism for establishing beneficial strains along the ontogenetic progression. Moreover, the highly transient microbiota in the early life stages became stable along the ontogenetic progression, hypothesizing that the earlier life stages will be the best window to influence the microbiota. The egg microbiota also crucially affected the microbial community. Noteworthily, both water and the feed microbiota significantly contributed to the early microbiota, with the feed microbiota having a more significant contribution to fish microbiota. The results illustrated that rotifer enrichment would be the optimal medium for the early larval microbiota manipulations. Conclusion: The present study highlighted the crucial foundations for the microbial ecology of T. blochii during early life stages with implications to develop suitable beneficial microbial management strategies for sustainable mariculture production.

2.
BMC Genomics ; 25(1): 424, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684959

RESUMEN

Salinity impacts crop growth and productivity and lowers the activities of rhizosphere microbiota. The identification and utilization of habitat-specific salinity-adapted plant growth-promoting rhizobacteria (PGPR) are considered alternative strategies to improve the growth and yields of crops in salinity-affected coastal agricultural fields. In this study, we characterize strain L1I39T, the first Aquabacter species with PGPR traits isolated from a salt-tolerant pokkali rice cultivated in brackish environments. L1I39T is positive for 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation and can promote pokkali rice growth by supplying fixed nitrogen under a nitrogen-deficient seawater condition. Importantly, enhanced plant growth and efficient root colonization were evident in L1I39T-inoculated plants grown under 20% seawater but not in zero-seawater conditions, identifying brackish conditions as a key local environmental factor critical for L1I39T-pokkali rice symbiosis. Detailed physiological studies revealed that L1I39T is well-adapted to brackish environments. In-depth genome analysis of L1I39T identified multiple gene systems contributing to its plant-associated lifestyle and brackish adaptations. The 16S rRNA-based metagenomic study identified L1I39T as an important rare PGPR taxon. Based on the polyphasic taxonomy analysis, we established strain L1I39T as a novel Aquabacter species and proposed Aquabacter pokkalii sp nov. Overall, this study provides a better understanding of a marine-adapted PGPR strain L1I39T that may perform a substantial role in host growth and health in nitrogen-poor brackish environments.


Asunto(s)
Fijación del Nitrógeno , Oryza , Filogenia , Raíces de Plantas , Oryza/microbiología , Oryza/genética , Oryza/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Rizosfera , Salinidad , Adaptación Fisiológica/genética , Simbiosis , ARN Ribosómico 16S/genética
3.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38467390

RESUMEN

AIMS: To identify a marine L-asparaginase with clinically desirable attributes and characterize the shortlisted candidate through in silico tools. METHODS AND RESULTS: Marine bacterial strains (number = 105) isolated from marine crabs were evaluated through a stepwise strategy incorporating the crucial attributes for therapeutic safety. The results demonstrated the potential of eight bacterial species for extracellular L-asparaginase production. However, only one isolate (Bacillus altitudinis CMFRI/Bal-2) showed clinically desirable attributes, viz. extracellular production, type-II nature, lack of concurrent L-glutaminase and urease activities, and presence of ansZ (functional gene for clinical type). The enzyme production was 22.55 ± 0.5 µM/mg protein/min within 24 h without optimization. The enzyme also showed good activity and stability in pH 7-8 and temperature 37°C, predicting the functioning inside the human body. The Michealis-Menten constant (Km) was 14.75 µM. Detailed in silico analysis based on functional gene authenticating the results of in vitro characterization and predicted the nonallergenic characteristic of the candidate. Docking results proved the higher affinity of the shortlisted candidate to L-asparagine than L-glutamine and urea. CONCLUSION: Comprehensively, the study highlighted B. altitudinis type II asparaginase as a competent candidate for further research on clinically safe asparaginases.


Asunto(s)
Asparaginasa , Bacillus , Humanos , Asparaginasa/genética , Bacillus/genética , Asparagina , Temperatura
4.
Fish Physiol Biochem ; 50(2): 557-574, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38193995

RESUMEN

Research on antioxidant biomarkers can generate profound insights into the defense mechanisms of fish larvae against different stressors and can reveal manipulation strategies for improved growth and survival. However, the number of samples to process and unavailability of required infrastructure in larval-rearing facilities limit the immediate processing, requiring the preservation of specimens. Silver pompano (Trachinotus blochii), a potential marine aquaculture species, shows a low larval survival rate due to poorly developed antioxidant mechanism. In this context, 39 storage conditions, including three storage temperatures and different buffers, were scrutinized to select the most suitable preservation strategy for five important antioxidant biomarkers of fish larvae, viz. catalase activity, superoxide dismutase (SOD) activity, measurement of lipid peroxidation, reduced glutathione (GSH), and ascorbic acid contents. The paper proposes the optimum larval storage conditions for these five evaluated antioxidant biomarkers to generate similar results in preserved and non-preserved larval samples. Larval samples preserved in PBS at lower temperatures (- 20 °C and - 80 °C) are recommended for evaluating catalase activity and ascorbic acid content. Catalase activity can also be evaluated by preserving the larval samples at - 20 °C or - 80 °C without buffers. Larval samples held in PBS or without any buffers at - 20 °C and at - 80 °C were found to be suitable for SOD and GSH evaluation, respectively. Preservation in 50% glacial acetic acid at - 80 °C or - 20 °C was preferred for the lipid peroxidation assays. Apart from methodological perspectives, the paper provides insights into the dynamics of larval antioxidant profiles of T. blochii, for the first time.


Asunto(s)
Antioxidantes , Superóxido Dismutasa , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Larva/metabolismo , Superóxido Dismutasa/metabolismo , Ácido Ascórbico , Glutatión , Peces/metabolismo , Biomarcadores/metabolismo , Peroxidación de Lípido , Estrés Oxidativo
5.
Artículo en Inglés | MEDLINE | ID: mdl-37851246

RESUMEN

Management of crustacean shell waste (SW) through an eco-friendly technique is an environmental obligation to control pollution. The present study showed a novel approach through the simultaneous application of proteolytic and chitinolytic bacteria to effectively degrade unprocessed crustacean SW. For this, the bacteria with concurrent chitinolytic and proteolytic activity (Bacillus subtilis, Priestia megaterium, or Bacillus amyloliquefaciens) were applied either alone or in combination with one proteolytic strain (Paenibacillus alvei) in the unprocessed lobster, crab, and shrimp SW. The method degraded the shells with high deproteinization (> 90%) and demineralization efficiency (> 90%). The degradation was confirmed through scanning electron microscopy. The highest weight loss achieved with shrimp, crab, and lobster shells was 93.67%, 82.60%, and 83.33%, respectively. B. amyloliquefaciens + P. alvei combination produced the highest weight loss in crab and lobster SW, whereas all combinations produced statistically similar weight loss in shrimp SW. There was a concurrent production of N-acetyl glucosamine (up to 532.89, 627.87, and 498.95 mg/g of shrimp, lobster, and crab shell, respectively, with P. megaterium + P. alvei and B. amyloliquefaciens + P. alvei in all SW) and amino acids (4553.8, 648.89, 957.27 µg/g of shrimp, lobster, and crab shells, respectively with B. subtilis + P. alvei in shrimp and B. amyloliquefaciens + P. alvei in crab and lobster). Therefore, it is concluded that, for the first time, efficient degradation of crustacean shell waste was observed using chitinolytic and proteolytic bacterial fermentation with the obtention of byproducts, providing a basis for further application in SW management.

6.
Front Med (Lausanne) ; 10: 1237219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675134

RESUMEN

Study design: Systematic review. Objective: The objective of this study was to evaluate the impact of phosphodiesterase (PDE) inhibitors on neurobehavioral outcomes in preclinical models of traumatic and non-traumatic spinal cord injury (SCI). Methods: A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and was registered with PROSPERO (CRD42019150639). Searches were performed in MEDLINE and Embase. Studies were included if they evaluated the impact of PDE inhibitors on neurobehavioral outcomes in preclinical models of traumatic or non-traumatic SCI. Data were extracted from relevant studies, including sample characteristics, injury model, and neurobehavioral assessment and outcomes. Risk of bias was assessed using the SYRCLE checklist. Results: The search yielded a total of 1,679 studies, of which 22 met inclusion criteria. Sample sizes ranged from 11 to 144 animals. PDE inhibitors used include rolipram (n = 16), cilostazol (n = 4), roflumilast (n = 1), and PDE4-I (n = 1). The injury models used were traumatic SCI (n = 18), spinal cord ischemia (n = 3), and degenerative cervical myelopathy (n = 1). The most commonly assessed outcome measures were Basso, Beattie, Bresnahan (BBB) locomotor score (n = 13), and grid walking (n = 7). Of the 22 papers that met the final inclusion criteria, 12 showed a significant improvement in neurobehavioral outcomes following the use of PDE inhibitors, four papers had mixed findings and six found PDE inhibitors to be ineffective in improving neurobehavioral recovery following an SCI. Notably, these findings were broadly consistent across different PDE inhibitors and spinal cord injury models. Conclusion: In preclinical models of traumatic and non-traumatic SCI, the administration of PDE inhibitors appeared to be associated with statistically significant improvements in neurobehavioral outcomes in a majority of included studies. However, the evidence was inconsistent with a high risk of bias. This review provides a foundation to aid the interpretation of subsequent clinical trials of PDE inhibitors in spinal cord injury. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=150639, identifier: CRD42019150639.

7.
Front Microbiol ; 13: 881275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707172

RESUMEN

Information on unintended effects of therapeutic exposure of antibiotics on the fish gut microbiome is a vital prerequisite for ensuring fish and environmental health during sustainable aquaculture production strategies. The present study forms the first report on the impact of florfenicol (FFC), a recommended antibiotic for aquaculture, on the gut microbiome of snubnose pompano (Trachinotus blochii), a high-value marine aquaculture candidate. Both culture-dependent and independent techniques were applied to identify the possible dysbiosis and restoration dynamics, pointing out the probable risks to the host and environment health. The results revealed the critical transient dysbiotic events in the taxonomic and functional metagenomic profiles and significant reductions in the bacterial load and diversity measures. More importantly, there was a complete restoration of gut microbiome density, diversity, functional metagenomic profiles, and taxonomic composition (up to class level) within 10-15 days of antibiotic withdrawal, establishing the required period for applying proper management measures to ensure animal and environment health, following FFC treatment. The observed transient increase in the relative abundance of opportunistic pathogens suggested the need to apply proper stress management measures and probiotics during the period. Simultaneously, the results demonstrated the inhibitory potential of FFC against marine pathogens (vibrios) and ampicillin-resistant microbes. The study pointed out the possible microbial signatures of stress in fish and possible probiotic microbes (Serratia sp., Methanobrevibacter sp., Acinetobacter sp., and Bacillus sp.) that can be explored to design fish health improvisation strategies. Strikingly, the therapeutic exposure of FFC neither caused any irreversible increase in antibiotic resistance nor promoted the FFC resistant microbes in the gut. The significant transient increase in the numbers of kanamycin-resistant bacteria and abundance of two multidrug resistance encoding genes (K03327 and K03585) in the treated fish gut during the initial 10 days post-withdrawal suggested the need for implementing proper aquaculture effluent processing measures during the period, thus, helps to reduce the spillover of antibiotic-resistant microbes from the gut of the treated fish to the environment. In brief, the paper generates interesting and first-hand insights on the implications of FFC treatment in the gut microbiome of a marine aquaculture candidate targeting its safe and efficient application in unavoidable circumstances. Implementation of mitigation strategies against the identified risks during the initial 15 days of withdrawal period is warranted to ensure cleaner and sustainable aquaculture production from aquatic animal and ecosystem health perspectives.

8.
Spinal Cord ; 59(12): 1221-1239, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34392312

RESUMEN

STUDY DESIGN: Systematic review. OBJECTIVES: To evaluate the impact of cannabinoids on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic spinal cord injury (SCI), with the aim of determining suitability for clinical trials involving SCI patients. METHODS: A systematic search was performed in MEDLINE and Embase databases, following registration with PROPSERO (CRD42019149671). Studies evaluating the impact of cannabinoids (agonists or antagonists) on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic SCI were included. Data extracted from relevant studies, included sample characteristics, injury model, neurobehavioural outcomes assessed and study results. PRISMA guidelines were followed and the SYRCLE checklist was used to assess risk of bias. RESULTS: The search returned 8714 studies, 19 of which met our inclusion criteria. Sample sizes ranged from 23 to 390 animals. WIN 55,212-2 (n = 6) and AM 630 (n = 8) were the most used cannabinoid receptor agonist and antagonist respectively. Acute SCI models included traumatic injury (n = 16), ischaemia/reperfusion injury (n = 2), spinal cord cryoinjury (n = 1) and spinal cord ischaemia (n = 1). Assessment tools used assessed locomotor function, pain and anxiety. Cannabinoid receptor agonists resulted in statistically significant improvement in locomotor function in 9 out of 10 studies and pain outcomes in 6 out of 6 studies. CONCLUSION: Modulation of the endo-cannabinoid system has demonstrated significant improvement in both pain and locomotor function in pre-clinical SCI models; however, the risk of bias is unclear in all studies. These results may help to contextualise future translational clinical trials investigating whether cannabinoids can improve pain and locomotor function in SCI patients.


Asunto(s)
Cannabinoides , Traumatismos de la Médula Espinal , Animales , Sesgo , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Humanos , Dolor/tratamiento farmacológico , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico
9.
Crit Rev Biotechnol ; 40(6): 865-880, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32508157

RESUMEN

Sugarcane (Saccharum spp.) is one of the most economically significant crops because of its high sucrose content and it is a promising biomass feedstock for biofuel production. Sugarcane genome sequencing and analysis is a difficult task due to its heterozygosity and polyploidy. Long sequence read technologies, PacBio Single-Molecule Real-Time (SMRT) sequencing, the Illumina TruSeq, and the Oxford Nanopore sequencing could solve the problem of genome assembly. On the applications side, next generation sequencing (NGS) technologies played a major role in the discovery of single nucleotide polymorphism (SNP) and the development of low to high throughput genotyping platforms. The two mainstream high throughput genotyping platforms are the SNP microarray and genotyping by sequencing (GBS). This paper reviews the NGS in sugarcane genomics, genotyping methodologies, and the choice of these methods. Array-based SNP genotyping is robust, provides consistent SNPs, and relatively easier downstream data analysis. The GBS method identifies large scale SNPs across the germplasm. A combination of targeted GBS and array-based genotyping methods should be used to increase the accuracy of genomic selection and marker-assisted breeding.


Asunto(s)
Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple/genética , Saccharum/genética , Productos Agrícolas/genética , Genoma de Planta/genética , Fitomejoramiento , Poliploidía , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA