Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Immunol ; 25(8): 1411-1421, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38997431

RESUMEN

A subset of individuals exposed to Mycobacterium tuberculosis (Mtb) that we refer to as 'resisters' (RSTR) show evidence of IFN-γ- T cell responses to Mtb-specific antigens despite serially negative results on clinical testing. Here we found that Mtb-specific T cells in RSTR were clonally expanded, confirming the priming of adaptive immune responses following Mtb exposure. RSTR CD4+ T cells showed enrichment of TH17 and regulatory T cell-like functional programs compared to Mtb-specific T cells from individuals with latent Mtb infection. Using public datasets, we showed that these TH17 cell-like functional programs were associated with lack of progression to active tuberculosis among South African adolescents with latent Mtb infection and with bacterial control in nonhuman primates. Our findings suggested that RSTR may successfully control Mtb following exposure and immune priming and established a set of T cell biomarkers to facilitate further study of this clinical phenotype.


Asunto(s)
Linfocitos T CD4-Positivos , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/inmunología , Humanos , Animales , Adolescente , Tuberculosis/inmunología , Tuberculosis/microbiología , Linfocitos T CD4-Positivos/inmunología , Células Th17/inmunología , Femenino , Macaca mulatta , Masculino , Fenotipo , Interferón gamma/metabolismo , Interferón gamma/inmunología , Antígenos Bacterianos/inmunología , Tuberculosis Latente/inmunología , Tuberculosis Latente/microbiología , Sudáfrica , Adulto Joven , Linfocitos T Reguladores/inmunología , Adulto
3.
Water Res ; 168: 115104, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31639592

RESUMEN

The use of molecular probe technology is demonstrated for routine identification and tracking of cultured and uncultured microorganisms in an activated sludge bioreactor treating domestic wastewater. A key advantage of molecular probe technology is that it can interrogate hundreds of microbial species of interest in a single measurement. In environmental niches where a single genus (such as Competibacteraceae) dominates, it can be difficult and expensive to identify microorganisms that are present at low relative abundance. With molecular probe technology, it is straightforward. Members of the Competibacteraceae family, none of which have been grown in pure culture, are abundant in an activated sludge system in the San Francisco Bay Area, California, USA. Molecular probe ensembles with and without Competibacteraceae probes were constructed. Whereas the probe ensemble with Competibacteraceae probes identified a total of ten bacteria, the molecular probe ensemble without Competibacteraceae probes identified 29 bacteria, including many at low relative abundance and including some species of public health significance.


Asunto(s)
Sondas Moleculares , Aguas del Alcantarillado , Reactores Biológicos , ARN Ribosómico 16S , San Francisco , Aguas Residuales
4.
J Am Chem Soc ; 141(20): 8198-8206, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31051070

RESUMEN

Fungal highly reducing polyketide synthases (HRPKSs) biosynthesize polyketides using a single set of domains iteratively. Product release is a critical step in HRPKS function to ensure timely termination and enzyme turnover. Nearly all of the HRPKSs characterized to date employ a separate thioesterase (TE) or acyltransferase enzyme for product release. In this study, we characterized two fungal HRPKSs that have fused C-terminal TE domains, a new domain architecture for fungal HRPKSs. We showed that both HRPKS-TEs synthesize aminoacylated polyketides in an ATP-independent fashion. The KU42 TE domain selects cysteine and homocysteine and catalyzes transthioesterification using the side-chain thiol group as the nucleophile. In contrast, the KU43 TE domain selects leucine methyl ester and performs a direct amidation of the polyketide, a reaction typically catalyzed by nonribosomal peptide synthetase (NRPS) domains. The characterization of these HRPKS-TE enzymes showcases the functional diversity of HRPKS enzymes and provides potential TE domains as biocatalytic tools to diversify HRPKS structures.


Asunto(s)
Basidiomycota/metabolismo , Policétidos/metabolismo , Tioléster Hidrolasas/metabolismo , Aminoacilación , Basidiomycota/enzimología , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Policétidos/química , Dominios Proteicos , Estereoisomerismo , Tioléster Hidrolasas/química
5.
Nat Biotechnol ; 36(6): 512-520, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29734294

RESUMEN

Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess the phenotypic consequences of each perturbation. Here we describe a CRISPR-Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in Saccharomyces cerevisiae. MAGESTIC uses array-synthesized guide-donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased more than fivefold by recruiting donor DNA to the site of breaks using the LexA-Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Edición Génica/métodos , Saccharomyces cerevisiae/genética , Sustitución de Aminoácidos , Biotecnología , Sistemas CRISPR-Cas , ADN de Hongos/genética , Genoma Fúngico , Recombinación Homóloga , Proteínas de Transferencia de Fosfolípidos/genética , Plásmidos/genética , ARN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Mol Syst Biol ; 13(7): 934, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28705884

RESUMEN

Many cellular functions are mediated by protein-protein interaction networks, which are environment dependent. However, systematic measurement of interactions in diverse environments is required to better understand the relative importance of different mechanisms underlying network dynamics. To investigate environment-dependent protein complex dynamics, we used a DNA-barcode-based multiplexed protein interaction assay in Saccharomyces cerevisiae to measure in vivo abundance of 1,379 binary protein complexes under 14 environments. Many binary complexes (55%) were environment dependent, especially those involving transmembrane transporters. We observed many concerted changes around highly connected proteins, and overall network dynamics suggested that "concerted" protein-centered changes are prevalent. Under a diauxic shift in carbon source from glucose to ethanol, a mass-action-based model using relative mRNA levels explained an estimated 47% of the observed variance in binary complex abundance and predicted the direction of concerted binary complex changes with 88% accuracy. Thus, we provide a resource of yeast protein interaction measurements across diverse environments and illustrate the value of this resource in revealing mechanisms of network dynamics.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Simulación por Computador , Código de Barras del ADN Taxonómico , Perfilación de la Expresión Génica , Modelos Biológicos , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Mapeo de Interacción de Proteínas/métodos , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Biología de Sistemas
7.
Mol Syst Biol ; 13(2): 913, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28193641

RESUMEN

The low costs of array-synthesized oligonucleotide libraries are empowering rapid advances in quantitative and synthetic biology. However, high synthesis error rates, uneven representation, and lack of access to individual oligonucleotides limit the true potential of these libraries. We have developed a cost-effective method called Recombinase Directed Indexing (REDI), which involves integration of a complex library into yeast, site-specific recombination to index library DNA, and next-generation sequencing to identify desired clones. We used REDI to generate a library of ~3,300 DNA probes that exhibited > 96% purity and remarkable uniformity (> 95% of probes within twofold of the median abundance). Additionally, we created a collection of ~9,000 individually accessible CRISPR interference yeast strains for > 99% of genes required for either fermentative or respiratory growth, demonstrating the utility of REDI for rapid and cost-effective creation of strain collections from oligonucleotide pools. Our approach is adaptable to any complex DNA library, and fundamentally changes how these libraries can be parsed, maintained, propagated, and characterized.


Asunto(s)
Análisis de Secuencia de ADN/métodos , Levaduras/genética , Sistemas CRISPR-Cas , Biología Computacional/métodos , ADN de Hongos/genética , Biblioteca de Genes
8.
Cold Spring Harb Protoc ; 2016(9)2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27587778

RESUMEN

The Yeast Knockout Collection is a complete set of gene deletion strains for the budding yeast, Saccharomyces cerevisiae In each strain, one of approximately 6000 open-reading frames is replaced with a dominant selectable marker flanked by two DNA barcodes. These barcodes, which are unique to each gene, allow the growth of thousands of strains to be individually measured from a single pooled culture. The collection, and other resources that followed, has ushered in a new era in chemical biology, enabling unbiased and systematic identification of chemical-genetic interactions (CGIs) with remarkable ease. CGIs link bioactive compounds to biological processes, and hence can reveal the mechanism of action of growth-inhibitory compounds in vivo, including those of antifungal, antibiotic, and anticancer drugs. The chemogenomic profiling method described here measures the sensitivity induced in yeast heterozygous and homozygous deletion strains in the presence of a chemical inhibitor of growth (termed haploinsufficiency profiling and homozygous profiling, respectively, or HIPHOP). The protocol is both scalable and amenable to automation. After competitive growth of yeast knockout collection cultures, with and without chemical inhibitors, CGIs can be identified and quantified using either array- or sequencing-based approaches as described here.


Asunto(s)
Antifúngicos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Eliminación de Gen , Genes Fúngicos , Inhibidores de Crecimiento/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Biblioteca de Genes , Pruebas Genéticas , Saccharomyces cerevisiae/genética
9.
Cold Spring Harb Protoc ; 2016(9)2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27587783

RESUMEN

Chemical-genetic interactions (CGIs) describe a phenomenon where the effects of a chemical compound (i.e., a small molecule) on cell growth are dependent on a particular gene. CGIs can reveal important functional information about genes and can also be powerful indicators of a compound's mechanism of action. Mapping CGIs can lead to the discovery of new chemical probes, which, in contrast to genetic perturbations, operate at the level of the gene product (or pathway) and can be fast-acting, tunable, and reversible. The simple culture conditions required for yeast and its rapid growth, as well as the availability of a complete set of barcoded gene deletion strains, facilitate systematic mapping of CGIs in this organism. This process involves two basic steps: first, screening chemical libraries to identify bioactive compounds affecting growth and, second, measuring the effects of these compounds on genome-wide collections of mutant strains. Here, we introduce protocols for both steps that have great potential for the discovery and development of new small-molecule tools and medicines.


Asunto(s)
Antifúngicos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/farmacología , Saccharomyces cerevisiae/genética
10.
Genome Biol ; 17: 45, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26956608

RESUMEN

BACKGROUND: Genome-scale CRISPR interference (CRISPRi) has been used in human cell lines; however, the features of effective guide RNAs (gRNAs) in different organisms have not been well characterized. Here, we define rules that determine gRNA effectiveness for transcriptional repression in Saccharomyces cerevisiae. RESULTS: We create an inducible single plasmid CRISPRi system for gene repression in yeast, and use it to analyze fitness effects of gRNAs under 18 small molecule treatments. Our approach correctly identifies previously described chemical-genetic interactions, as well as a new mechanism of suppressing fluconazole toxicity by repression of the ERG25 gene. Assessment of multiple target loci across treatments using gRNA libraries allows us to determine generalizable features associated with gRNA efficacy. Guides that target regions with low nucleosome occupancy and high chromatin accessibility are clearly more effective. We also find that the best region to target gRNAs is between the transcription start site (TSS) and 200 bp upstream of the TSS. Finally, unlike nuclease-proficient Cas9 in human cells, the specificity of truncated gRNAs (18 nt of complementarity to the target) is not clearly superior to full-length gRNAs (20 nt of complementarity), as truncated gRNAs are generally less potent against both mismatched and perfectly matched targets. CONCLUSIONS: Our results establish a powerful functional and chemical genomics screening method and provide guidelines for designing effective gRNAs, which consider chromatin state and position relative to the target gene TSS. These findings will enable effective library design and genome-wide programmable gene repression in many genetic backgrounds.


Asunto(s)
Sistemas CRISPR-Cas/genética , Genoma Fúngico , ARN Guía de Kinetoplastida/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Cromatina/genética , Humanos , Oxigenasas de Función Mixta/genética , Nucleosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción
11.
Nat Commun ; 5: 5585, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25519239

RESUMEN

Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacología , Núcleo Celular/metabolismo , Bases de Datos Farmacéuticas , Reposicionamiento de Medicamentos , Regulación de la Expresión Génica , Humanos , Proteínas de Transporte de Membrana/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , ATPasas de Translocación de Protón Mitocondriales/deficiencia , Terapia Molecular Dirigida , Mutación , Proteínas Nucleares/genética , Fosforilación Oxidativa/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Piridinas/farmacología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Tionas/farmacología
12.
BMC Genomics ; 15: 263, 2014 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-24708151

RESUMEN

BACKGROUND: Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. RESULTS: We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu's positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson's disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. CONCLUSIONS: A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations.


Asunto(s)
Cobre/metabolismo , Homeostasis/genética , Levaduras/genética , Levaduras/metabolismo , Respiración de la Célula , Análisis por Conglomerados , Cobre/deficiencia , Medios de Cultivo , Disulfiram/farmacología , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homeostasis/efectos de los fármacos , Humanos , Hidrazinas/farmacología , Concentración de Iones de Hidrógeno , Fenotipo , Vacuolas/genética , Vacuolas/metabolismo , Levaduras/efectos de los fármacos
13.
Science ; 344(6180): 208-11, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24723613

RESUMEN

Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.


Asunto(s)
Células/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Resistencia a Medicamentos/genética , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Haploinsuficiencia , Humanos , Farmacogenética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
14.
Nat Chem Biol ; 10(1): 76-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24292071

RESUMEN

Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate production and are discriminating portals for interrogating phosphoinositide signaling. Yet, neither Sec14-like PITPs nor PITPs in general have been exploited as targets for chemical inhibition for such purposes. Herein, we validate what is to our knowledge the first small-molecule inhibitors (SMIs) of the yeast PITP Sec14. These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs) and are effective inhibitors in vitro and in vivo. We further establish that Sec14 is the sole essential NPPM target in yeast and that NPPMs exhibit exquisite targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism for how NPPMs exert their inhibitory effects and demonstrate that NPPMs exhibit exquisite pathway selectivity in inhibiting phosphoinositide signaling in cells. These data deliver proof of concept that PITP-directed SMIs offer new and generally applicable avenues for intervening with phosphoinositide signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-directed strategies.


Asunto(s)
Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Transducción de Señal , Unión Proteica , Relación Estructura-Actividad
15.
Pharmacogenet Genomics ; 22(12): 877-86, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23076370

RESUMEN

OBJECTIVE: To advance our understanding of disease biology, the characterization of the molecular target for clinically proven or new drugs is very important. Because of its simplicity and the availability of strains with individual deletions in all of its genes, chemogenomic profiling in yeast has been used to identify drug targets. As measurement of drug-induced changes in cellular metabolites can yield considerable information about the effects of a drug, we investigated whether combining chemogenomic and metabolomic profiling in yeast could improve the characterization of drug targets. BASIC METHODS: We used chemogenomic and metabolomic profiling in yeast to characterize the target for five drugs acting on two biologically important pathways. A novel computational method that uses a curated metabolic network was also developed, and it was used to identify the genes that are likely to be responsible for the metabolomic differences found. RESULTS AND CONCLUSION: The combination of metabolomic and chemogenomic profiling, along with data analyses carried out using a novel computational method, could robustly identify the enzymes targeted by five drugs. Moreover, this novel computational method has the potential to identify genes that are causative of metabolomic differences or drug targets.


Asunto(s)
Redes y Vías Metabólicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Computacional , Sistemas de Liberación de Medicamentos , Perfilación de la Expresión Génica , Metabolómica , Saccharomyces cerevisiae/efectos de los fármacos
16.
Proc Natl Acad Sci U S A ; 109(23): 9213-8, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615397

RESUMEN

Changes in protein-protein interactions that occur in response to environmental cues are difficult to uncover and have been poorly characterized to date. Here we describe a yeast-based assay that allows many binary protein interactions to be assessed in parallel and under various conditions. This method combines molecular bar-coding and tag array technology with the murine dihydrofolate reductase-based protein-fragment complementation assay. A total of 238 protein-fragment complementation assay strains, each representing a unique binary protein complex, were tagged with molecular barcodes, pooled, and then interrogated against a panel of 80 diverse small molecules. Our method successfully identified specific disruption of the Hom3:Fpr1 interaction by the immunosuppressant FK506, illustrating the assay's capacity to identify chemical inhibitors of protein-protein interactions. Among the additional findings was specific cellular depletion of the Dst1:Rbp9 complex by the anthracycline drug doxorubicin, but not by the related drug idarubicin. The assay also revealed chemical-induced accumulation of several binary multidrug transporter complexes that largely paralleled increases in transcript levels. Further assessment of two such interactions (Tpo1:Pdr5 and Snq2:Pdr5) in the presence of 1,246 unique chemical compounds revealed a positive correlation between drug lipophilicity and the drug response in yeast.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Bibliotecas de Moléculas Pequeñas/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Animales , Biología Computacional , Proteínas de Unión al ADN , Ratones , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Formil Péptido/metabolismo , Proteínas de Saccharomyces cerevisiae , Tacrolimus , Levaduras
17.
Nat Chem Biol ; 4(8): 498-506, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18622389

RESUMEN

Bioactive compounds are widely used to modulate protein function and can serve as important leads for drug development. Identifying the in vivo targets of these compounds remains a challenge. Using yeast, we integrated three genome-wide gene-dosage assays to measure the effect of small molecules in vivo. A single TAG microarray was used to resolve the fitness of strains derived from pools of (i) homozygous deletion mutants, (ii) heterozygous deletion mutants and (iii) genomic library transformants. We demonstrated, with eight diverse reference compounds, that integration of these three chemogenomic profiles improves the sensitivity and specificity of small-molecule target identification. We further dissected the mechanism of action of two protein phosphatase inhibitors and in the process developed a framework for the rational design of multidrug combinations to sensitize cells with specific genotypes more effectively. Finally, we applied this platform to 188 novel synthetic chemical compounds and identified both potential targets and structure-activity relationships.


Asunto(s)
Diseño de Fármacos , Genoma Fúngico , Genómica/métodos , Compuestos Orgánicos/farmacología , Genes Fúngicos/efectos de los fármacos , Compuestos Orgánicos/síntesis química , Relación Estructura-Actividad , Levaduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...