Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39377758

RESUMEN

Millions of people worldwide suffer from musculoskeletal damage, thus using the largest proportion of rehabilitation services. The limited self-regenerative capacity of bone and cartilage tissues necessitates the development of functional biomaterials. Magnetoactive materials are a promising solution due to clinical safety and deep tissue penetration of magnetic fields (MFs) without attenuation and tissue heating. Herein, electrospun microfibrous scaffolds were developed based on piezoelectric poly(3-hydroxybutyrate) (PHB) and composite magnetic nanofillers [magnetite with graphene oxide (GO) or reduced GO]. The scaffolds' morphology, structure, mechanical properties, surface potential, and piezoelectric response were systematically investigated. Furthermore, a complex mechanism of enzymatic biodegradation of these scaffolds is proposed that involves (i) a release of polymer crystallites, (ii) crystallization of the amorphous phase, and (iii) dissolution of the amorphous phase. Incorporation of Fe3O4, Fe3O4-GO, or Fe3O4-rGO accelerated the biodegradation of PHB scaffolds owing to pores on the surface of composite fibers and the enlarged content of polymer amorphous phase in the composite scaffolds. Six-month biodegradation caused a reduction in surface potential (1.5-fold) and in a vertical piezoresponse (3.5-fold) of the Fe3O4-GO scaffold because of a decrease in the PHB ß-phase content. In vitro assays in the absence of an MF showed a significantly more pronounced mesenchymal stem cell proliferation on composite magnetic scaffolds compared to the neat scaffold, whereas in an MF (68 mT, 0.67 Hz), cell proliferation was not statistically significantly different when all the studied scaffolds were compared. The PHB/Fe3O4-GO scaffold was implanted into femur bone defects in rats, resulting in successful bone repair after nonperiodic magnetic stimulation (200 mT, 0.04 Hz) owing to a synergetic influence of increased surface roughness, the presence of hydrophilic groups near the surface, and magnetoelectric and magnetomechanical effects of the material.

2.
Mater Today Bio ; 25: 100950, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38318479

RESUMEN

Nerve injuries pose a drastic threat to nerve mobility and sensitivity and lead to permanent dysfunction due to low regenerative capacity of mature neurons. The electrical stimuli that can be provided by electroactive materials are some of the most effective tools for the formation of soft tissues, including nerves. Electric output can provide a distinctly favorable bioelectrical microenvironment, which is especially relevant for the nervous system. Piezoelectric biomaterials have attracted attention in the field of neural tissue engineering owing to their biocompatibility and ability to generate piezoelectric surface charges. In this review, an outlook of the most recent achievements in the field of piezoelectric biomaterials is described with an emphasis on piezoelectric polymers for neural tissue engineering. First, general recommendations for the design of an optimal nerve scaffold are discussed. Then, specific mechanisms determining nerve regeneration via piezoelectric stimulation are considered. Activation of piezoelectric responses via natural body movements, ultrasound, and magnetic fillers is also examined. The use of magnetoelectric materials in combination with alternating magnetic fields is thought to be the most promising due to controllable reproducible cyclic deformations and deep tissue permeation by magnetic fields without tissue heating. In vitro and in vivo applications of nerve guidance scaffolds and conduits made of various piezopolymers are reviewed too. Finally, challenges and prospective research directions regarding piezoelectric biomaterials promoting nerve regeneration are discussed. Thus, the most relevant scientific findings and strategies in neural tissue engineering are described here, and this review may serve as a guideline both for researchers and clinicians.

3.
ACS Appl Bio Mater ; 7(2): 1095-1114, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38270084

RESUMEN

Peripheral nerve injury poses a threat to the mobility and sensitivity of a nerve, thereby leading to permanent function loss due to the low regenerative capacity of mature neurons. To date, the most widely clinically applied approach to bridging nerve injuries is autologous nerve grafting, which faces challenges such as donor site morbidity, donor shortages, and the necessity of a second surgery. An effective therapeutic strategy is urgently needed worldwide to overcome the current limitations. Herein, a magnetic nerve guidance conduit (NGC) based on biocompatible biodegradable poly(3-hydroxybutyrate) (PHB) and 8 wt % of magnetite nanoparticles modified by citric acid (Fe3O4-CA) was fabricated by electrospinning. The crystalline structure of NGCs was studied by X-ray diffraction, which indicated an enlarged ß-phase of PHB in the composite conduit compared to a pure PHB conduit. Tensile tests revealed greater ductility of PHB/Fe3O4-CA: the composite conduit has Young's modulus of 221 ± 52 MPa and an elongation at break of 28.6 ± 2.9%, comparable to clinical materials. Saturation magnetization (σs) of Fe3O4-CA and PHB/Fe3O4-CA is 61.88 ± 0.29 and 7.44 ± 0.07 emu/g, respectively. The water contact angle of the PHB/Fe3O4-CA conduit is lower as compared to pure PHB, while surface free energy (σ) is significantly higher, which was attributed to higher surface roughness and an amorphous phase as well as possible PHB/Fe3O4-CA interface interactions. In vitro, the conduits supported the proliferation of rat mesenchymal stem cells (rMSCs) and SH-SY5Y cells in a low-frequency magnetic field (0.67 Hz, 68 mT). In vivo, the conduits were used to bridge damaged sciatic nerves in rats; pure PHB and composite PHB/Fe3O4-CA conduits did not cause acute inflammation and performed a barrier function, which promotes nerve regeneration. Thus, these conduits are promising as implants for the regeneration of peripheral nerves.


Asunto(s)
Nanopartículas de Magnetita , Neuroblastoma , Traumatismos de los Nervios Periféricos , Polihidroxibutiratos , Ratas , Humanos , Animales , Traumatismos de los Nervios Periféricos/terapia , Ácido 3-Hidroxibutírico/farmacología , Materiales Biocompatibles/farmacología , Nanopartículas de Magnetita/uso terapéutico , Hidroxibutiratos/farmacología , Regeneración Nerviosa/fisiología
4.
ACS Omega ; 8(30): 27519-27533, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37546645

RESUMEN

New ß-stabilized Ti-based alloys are highly promising for bone implants, thanks in part to their low elasticity. The nature of this elasticity, however, is as yet unknown. We here present combined first-principles DFT calculations and experiments on the microstructure, structural stability, mechanical characteristics, and electronic structure to elucidate this origin. Our results suggest that the studied ß Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufactured by the electron-beam powder bed fusion (E-PBF) method has homogeneous mechanical properties (H = 2.01 ± 0.22 GPa and E = 69.48 ± 0.03 GPa) along the building direction, which is dictated by the crystallographic texture and microstructure morphologies. The analysis of the structural and electronic properties, as the main factors dominating the chemical bonding mechanism, indicates that TNZT has a mixture of strong metallic and weak covalent bonding. Our calculations demonstrate that the softening in the Cauchy pressure (C' = 98.00 GPa) and elastic constant C̅44 = 23.84 GPa is the origin of the low elasticity of TNZT. Moreover, the nature of this softening phenomenon can be related to the weakness of the second and third neighbor bonds in comparison with the first neighbor bonds in the TNZT. Thus, the obtained results indicate that a carefully designed TNZT alloy can be an excellent candidate for the manufacturing of orthopedic internal fixation devices. In addition, the current findings can be used as guidance not only for predicting the mechanical properties but also the nature of elastic characteristics of the newly developed alloys with yet unknown properties.

5.
Materials (Basel) ; 16(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37445133

RESUMEN

The ß-type Ti-42Nb alloy has been successfully manufactured from pre-alloyed powder using the E-PBF method for the first time. This study presents thorough microstructural investigations employing diverse methodologies such as EDS, XRD, TEM, and EBSD, while mechanical properties are assessed using UPT, nanoindentation, and compression tests. Microstructural analysis reveals that Ti-42Nb alloy primarily consisted of the ß phase with the presence of a small amount of nano-sized α″-martensite formed upon fast cooling. The bimodal-grained microstructure of Ti-42Nb alloy comprising epitaxially grown fine equiaxed and elongated equiaxed ß-grains with an average grain size of 40 ± 28 µm exhibited a weak texture. The study shows that the obtained microstructure leads to improved mechanical properties. Young's modulus of 78.69 GPa is significantly lower than that of cp-Ti and Ti-6Al-4V alloys. The yield strength (379 MPa) and hardness (3.2 ± 0.5 GPa) also meet the criteria and closely approximate the values typical of cortical bone. UPT offers a reliable opportunity to study the nature of the ductility of the Ti-42Nb alloy by calculating its elastic constants. XPS surface analysis and electrochemical experiments demonstrate that the better corrosion resistance of the alloy in SBF is maintained by the dominant presence of TiO2 and Nb2O5. The results provide valuable insights into the development of novel low-modulus Ti-Nb alloys, which are interesting materials for additive-manufactured implants with the desired properties required for their biomedical applications.

6.
Polymers (Basel) ; 15(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37514524

RESUMEN

This study considers a fabrication of magnetoactive scaffolds based on a copolymer of vinylidene fluoride and trifluoroethylene (P(VDF-TrFE)) and 5, 10, and 15 wt.% of magnetite (Fe3O4) nanoparticles modified with citric (CA) and oleic (OA) acids by solution electrospinning. The synthesized Fe3O4-CA and Fe3O4-OA nanoparticles are similar in particle size and phase composition, but differ in zeta potential values and magnetic properties. Pure P(VDF-TrFE) scaffolds as well as composites with Fe3O4-CA and Fe3O4-OA nanoparticles demonstrate beads-free 1 µm fibers. According to scanning electron (SEM) and transmission electron (TEM) microscopy, fabricated P(VDF-TrFE) scaffolds filled with CA-modified Fe3O4 nanoparticles have a more homogeneous distribution of magnetic filler due to both the high stabilization ability of CA molecules and the affinity of Fe3O4-CA nanoparticles to the solvent used and P(VDF-TrFE) functional groups. The phase composition of pure and composite scaffolds includes a predominant piezoelectric ß-phase, and a γ-phase, to a lesser extent. When adding Fe3O4-CA and Fe3O4-OA nanoparticles, there was no significant decrease in the degree of crystallinity of the P(VDF-TrFE), which, on the contrary, increased up to 76% in the case of composite scaffolds loaded with 15 wt.% of the magnetic fillers. Magnetic properties, mainly saturation magnetization (Ms), are in a good agreement with the content of Fe3O4 nanoparticles and show, among the known magnetoactive PVDF or P(VDF-TrFE) scaffolds, the highest Ms value, equal to 10.0 emu/g in the case of P(VDF-TrFE) composite with 15 wt.% of Fe3O4-CA nanoparticles.

7.
Small ; 19(42): e2302808, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37357170

RESUMEN

Magnetoelectric (ME) small-scale robotic devices attract great interest from the scientific community due to their unique properties for biomedical applications. Here, novel ME nano hetero-structures based on the biocompatible magnetostrictive MnFe2 O4 (MFO) and ferroelectric Ba0.85 Ca0.15 Zr0.1 Ti0.9 O3 (BCZT) are developed solely via the hydrothermal method for the first time. An increase in the temperature and duration of the hydrothermal synthesis results in increasing the size, improving the purity, and inducing morphology changes of MFO nanoparticles (NPs). A successful formation of a thin epitaxial BCZT-shell with a 2-5 nm thickness is confirmed on the MFO NPs (77 ± 14 nm) preliminarily treated with oleic acid (OA) or polyvinylpyrrolidone (PVP), whereas no shell is revealed on the surface of pristine MFO NPs. High magnetization is revealed for the developed ME NPs based on PVP- and OA-functionalized MFO NPs (18.68 ± 0.13 and 20.74 ± 0.22 emu g-1 , respectively). Moreover, ME NPs demonstrate 95% degradation of a model pollutant Rhodamine B within 2.5 h under an external AC magnetic field (150 mT, 100 Hz). Thus, the developed biocompatible core-shell ME NPs of MFO and BCZT can be considered as a promising tool for non-invasive biomedical applications, environmental remediation, and hydrogen generation for renewable energy sources.

8.
ACS Appl Mater Interfaces ; 15(3): 3731-3743, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36626669

RESUMEN

Piezoelectric materials are promising for biomedical applications because they can provide mechanical or electrical stimulations via converse or direct piezoelectric effects. The stimulations have been proven to be beneficial for cell proliferation and tissue regeneration. Recent reports showed that doping different contents of reduced graphene oxide (rGO) or polyaniline (PANi) into biodegradable polyhydroxybutyrate (PHB) enhanced their piezoelectric response, showing potential for biomedical applications. In this study, we aim to determine the correlation between physiochemical properties and the in vitro cell response to the PHB-based composite scaffolds with rGO or PANi. Specifically, we characterized the surface morphology, wetting behavior, electrochemical impedance, and piezoelectric properties of the composites and controls. The addition of rGO and PANi resulted in decreased fiber diameters and hydrophobicity of PHB. The increased surface energy of PHB after doping nanofillers led to a reduced water contact angle (WCA) from 101.84 ± 2.18° (for PHB) to 88.43 ± 0.83° after the addition of 3 wt % PANi, whereas doping 1 wt % rGO decreased the WCA value to 92.56 ± 2.43°. Meanwhile, doping 0.2 wt % rGO into PHB improved the piezoelectric properties compared to the PHB control and other composites. Adding up to 1 wt % rGO or 3 wt % PANi nanofillers in PHB did not affect the adhesion densities of bone marrow-derived mesenchymal stem cells (BMSCs) on the scaffolds. The aspect ratios of attached BMSCs on the composite scaffolds increased compared to the PHB control. The study indicated that the PHB-based composites are promising for potential applications such as regenerative medicine, tissue stimulation, and bio-sensing, which should be further studied.


Asunto(s)
Grafito , Células Madre Mesenquimatosas , Polímeros/farmacología , Polímeros/química , Grafito/farmacología , Grafito/química
9.
Adv Healthc Mater ; 12(8): e2201726, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36468909

RESUMEN

This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V-1 ) and lateral (1.06 ± 0.02 pm V-1 ) piezoresponse owing to a greater presence of electroactive ß-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications.


Asunto(s)
Hidroxibutiratos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Ácido 3-Hidroxibutírico , Hidroxibutiratos/química , Ingeniería de Tejidos/métodos , Poliésteres/química
10.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203380

RESUMEN

The ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of E. coli and L. fermentum under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy. Crystal violet staining made it possible to reveal differences in the surface charge value and to study the adhesion of bacteria to it. It was shown that the differences in physicochemical properties of materials and the manifestation of magnetoactive properties of materials have a multidirectional effect on the adhesion of model microorganisms. Compared to pure PHB, the adhesion of E. coli to PHB-MNP/GO, and for L. fermentum to both composite materials, was higher. In the magnetic field, the adhesion of E. coli increased markedly compared to PHB-MNP/GO, whereas the effect on the adhesion of L. fermentum was reversed and was only evident in samples with PHB-MNP. Thus, the resultant factors enhancing and impairing the substrate binding of Gram-negative E. coli and Gram-positive L. fermentum turned out to be multidirectional, as they probably have different sensitivity to them. The results obtained will allow for the development of materials with externally controlled adhesion of bacteria to them for biotechnology and medicine.


Asunto(s)
Limosilactobacillus fermentum , Nanopartículas de Magnetita , Polihidroxibutiratos , Ácido 3-Hidroxibutírico , Escherichia coli , Campos Magnéticos
11.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500941

RESUMEN

One-dimensional anisotropic nanoparticles are of great research interest across a wide range of biomedical applications due to their specific physicochemical and magnetic properties in comparison with isotropic magnetic nanoparticles. In this work, the formation of iron oxides and oxyhydroxide anisotropic nanoparticles (ANPs) obtained by the co-precipitation method in the presence of urea was studied. Reaction pathways of iron oxide and oxyhydroxide ANPs formation are described based on of X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and pulse magnetometry studies. It is shown that a nonmonotonic change in the Fe3O4 content occurs during synthesis. The maximum content of the Fe3O4 phase of 47.4% was obtained at 12 h of the synthesis. At the same time, the reaction products contain ANPs of α-FeOOH and submicron isotropic particles of Fe3O4, the latter formation can occur due to the oxidation of Fe2+ ions by air-oxygen and Ostwald ripening processes. A subsequent increase in the synthesis time leads to the predominant formation of an α-FeOOH phase due to the oxidation of Fe3O4. As a result of the work, a methodological scheme for the analysis of iron oxide and oxyhydroxide ANPs was developed.

12.
ACS Omega ; 7(45): 41392-41411, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406497

RESUMEN

This is a comprehensive study on the reinforcement of electrospun poly(3-hydroxybutyrate) (PHB) scaffolds with a composite filler of magnetite-reduced graphene oxide (Fe3O4-rGO). The composite filler promoted the increase of average fiber diameters and decrease of the degree of crystallinity of hybrid scaffolds. The decrease in the fiber diameter enhanced the ductility and mechanical strength of scaffolds. The surface electric potential of PHB/Fe3O4-rGO composite scaffolds significantly increased with increasing fiber diameter owing to a greater number of polar functional groups. The changes in the microfiber diameter did not have any influence on effective piezoresponses of composite scaffolds. The Fe3O4-rGO filler imparted high saturation magnetization (6.67 ± 0.17 emu/g) to the scaffolds. Thus, magnetic PHB/Fe3O4-rGO composite scaffolds both preserve magnetic properties and provide a piezoresponse, whereas varying the fiber diameter offers control over ductility and surface electric potential.

13.
ACS Appl Bio Mater ; 5(8): 3999-4019, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35925883

RESUMEN

Magnetically responsive composite polymer scaffolds have good potential for a variety of biomedical applications. In this work, electrospun composite scaffolds made of polyhydroxybutyrate (PHB) and magnetite (Fe3O4) particles (MPs) were studied before and after degradation in either PBS or a lipase solution. MPs of different sizes with high saturation magnetization were synthesized by the coprecipitation method followed by coating with citric acid (CA). Nanosized MPs were prone to magnetite-maghemite phase transformation during scaffold fabrication, as revealed by Raman spectroscopy; however, for CA-functionalized nanoparticles, the main phase was found to be magnetite, with some traces of maghemite. Submicron MPs were resistant to the magnetite-maghemite phase transformation. MPs did not significantly affect the morphology and diameter of PHB fibers. The scaffolds containing CA-coated MPs lost 0.3 or 0.2% of mass in the lipase solution and PBS, respectively, whereas scaffolds doped with unmodified MPs showed no mass changes after 1 month of incubation in either medium. In all electrospun scaffolds, no alterations of the fiber morphology were observed. Possible mechanisms of the crystalline-lamellar-structure changes in hybrid PHB/Fe3O4 scaffolds during hydrolytic and enzymatic degradation are proposed. It was revealed that particle size and particle surface functionalization affect the mechanical properties of the hybrid scaffolds. The addition of unmodified MPs increased scaffolds' ultimate strength but reduced elongation at break after the biodegradation, whereas simultaneous increases in both parameters were observed for composite scaffolds doped with CA-coated MPs. The highest saturation magnetization─higher than that published in the literature─was registered for composite PHB scaffolds doped with submicron MPs. All PHB scaffolds proved to be biocompatible, and the ones doped with nanosized MPs yielded faster proliferation of rat mesenchymal stem cells. In addition, all electrospun scaffolds were able to support angiogenesis in vivo at 30 days after implantation in Wistar rats.


Asunto(s)
Óxido Ferrosoférrico , Andamios del Tejido , Animales , Hidroxibutiratos , Lipasa , Fenómenos Magnéticos , Poliésteres , Ratas , Ratas Wistar , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
14.
Polymers (Basel) ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35160518

RESUMEN

Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers. In case of hybrid PHB/gelatin/Fe3O4 scaffolds submicron-sized Fe3O4 particles were observed in the surface layers of the fibers. The X-ray photoelectron spectroscopy results allowed the presence of gelatin on the fiber surface (N/C ratio-0.11) to be revealed. Incubation of the composite scaffolds in saline for 3 h decreased the amount of gelatin on the surface by more than ~75%. The differential scanning calorimetry results obtained for pure PHB scaffolds revealed a characteristic melting peak at 177.5 °C. The presence of gelatin in PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the decrease in melting temperature to 168-169 °C in comparison with pure PHB scaffolds due to the core-shell structure of the fibers. Hybrid scaffolds also demonstrated a decrease in crystallinity from 52.3% (PHB) to 16.9% (PHB/gelatin) and 9.2% (PHB/gelatin/Fe3O4). All the prepared scaffolds were non-toxic and saturation magnetization of the composite scaffolds with magnetite was 3.27 ± 0.22 emu/g, which makes them prospective candidates for usage in biomedical applications.

15.
Macromol Biosci ; 21(12): e2100266, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34608754

RESUMEN

In current orthopedic practice, bone implants used to-date often exhibit poor osteointegration, impaired osteogenesis, and, eventually, implant failure. Actively pursued strategies for tissue engineering could overcome these shortcomings by developing new hybrid materials with bioinspired structure and enhanced regenerative potential. In this study, the osteogenic and therapeutic potential of bioactive vaterite is investigated as a functional component of a fibrous polymeric scaffold for bone regeneration. Hybrid two-layered polycaprolactone scaffolds coated with vaterite (PCL/CaCO3 ) are studied during their 28-days implantation period in a rat femur defect. After this period, the study of tissue formation in the defected area is performed by the histological study of femur cross-sections. Immobilization of alkaline phosphatase (ALP) into PCL/CaCO3 scaffolds accelerates new bone tissue formation and defect repair. PCL/CaCO3 and PCL/CaCO3 /ALP scaffolds reveal 37.3% and 62.9% areas, respectively, filled with newly formed bone tissue in cross-sections compared to unmineralized PCL scaffold (17.5%). Bone turnover markers are monitored on the 7th and 28th days after implantation and reveal an increase of osteocalcin level for both PCL/CaCO3 and PCL/CaCO3 /ALP compared with PCL indicating the activation of osteogenesis. These findings indicate that vaterite, as an osteoconductive component of polymeric scaffolds, promotes osteogenesis, supports angiogenesis, and facilitates bone defect repair.


Asunto(s)
Sustitutos de Huesos/química , Materiales Biocompatibles Revestidos/química , Fémur , Osteogénesis , Poliésteres/química , Andamios del Tejido/química , Animales , Fémur/lesiones , Fémur/metabolismo , Masculino , Ratas
16.
Materials (Basel) ; 14(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34501001

RESUMEN

Targeting biomedical applications, Triply Periodic Minimal Surface (TPMS) gyroid sheet-based structures were successfully manufactured for the first time by Electron Beam Melting in two different production Themes, i.e., inputting a zero (Wafer Theme) and a 200 µm (Melt Theme) wall thickness. Initial assumption was that in both cases, EBM manufacturing should yield the structures with similar mechanical properties as in a Wafer-mode, as wall thickness is determined by the minimal beam spot size of ca 200 µm. Their surface morphology, geometry, and mechanical properties were investigated by means of electron microscopy (SEM), X-ray Computed Tomography (XCT), and uniaxial tests (both compression and tension). Application of different manufacturing Themes resulted in specimens with different wall thicknesses while quasi-elastic gradients for different Themes was found to be of 1.5 GPa, similar to the elastic modulus of human cortical bone tissue. The specific energy absorption at 50% strain was also similar for the two types of structures. Finite element simulations were also conducted to qualitatively analyze the deformation process and the stress distribution under mechanical load. Simulations demonstrated that in the elastic regime wall, regions oriented parallel to the load are primarily affected by deformation. We could conclude that gyroids manufactured in Wafer and Melt Themes are equally effective in mimicking mechanical properties of the bones.

17.
Materials (Basel) ; 14(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206071

RESUMEN

Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control, which can prevent their successful application. In fact, the optimization of the AM process is impossible without considering structural characteristics as manufacturing accuracy, internal defects, as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of X-ray computed tomography (XCT). Several advanced image analysis workflows are presented to evaluate the effect of build orientation on wall thicknesses distribution, wall degradation, and surface roughness reduction due to the chemical etching of TPMSS. It is shown that the manufacturing accuracy differs for the structural elements printed parallel and orthogonal to the manufactured layers. Different strategies for chemical etching show different powder removal capabilities and both lead to the loss of material and hence the gradient of the wall thickness. This affects the mechanical performance under compression by reduction of the yield stress. The positive effect of the chemical etching is the reduction of the surface roughness, which can potentially improve the fatigue properties of the components. Finally, XCT was used to correlate the amount of retained powder with the pore size of the functionally graded TPMSS, which can further improve the manufacturing process.

18.
Polymers (Basel) ; 13(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073335

RESUMEN

This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA.

19.
Mater Sci Eng C Mater Biol Appl ; 122: 111909, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33641905

RESUMEN

As the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO3) microparticles in a vaterite-calcite polymorph mixture. CaCO3-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one. However, reduced tensile strength and failure strain of 31% and 67% were observed, respectively. The biomimetic immobilization of enzyme alkaline phosphatase (ALP) and glycopeptide antibiotic vancomycin (VCM) preserved the CaCO3-mineralized PHB scaffold morphology and resulted in partial recrystallization of vaterite to calcite. In comparison to pristine scaffolds, the loading efficiency of CaCO3-mineralized PHB scaffolds was 4.6 and 3.5 times higher for VCM and ALP, respectively. Despite the increased number of cells incubated with ALP-immobilized scaffolds (up to 61% for non-mineralized and up to 36% for mineralized), the CaCO3-mineralized PHB scaffolds showed cell adhesion; those containing both VCM and ALP molecules had the highest cell density. Importantly, no toxicity for pre-osteoblastic cells was detected, even in the VCM-immobilized scaffolds. In contrast with antibiotic-free scaffolds, the VCM-immobilized ones had a pronounced antibacterial effect against gram-positive bacteria Staphylococcus aureus. Thus, piezoelectric hybrid PHB scaffolds modified with CaCO3 layers and immobilized VCM/ALP are promising materials in bone tissue engineering.


Asunto(s)
Preparaciones Farmacéuticas , Ingeniería de Tejidos , Antibacterianos/farmacología , Carbonato de Calcio , Andamios del Tejido
20.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008562

RESUMEN

Titanium alloy (Ti6Al4V) is one of the most prominent biomaterials for bone contact because of its ability to bear mechanical loading and resist corrosion. The success of Ti6Al4V implants depends on bone formation on the implant surface. Hence, implant coatings which promote adhesion, proliferation and differentiation of bone-forming cells are desirable. One coating strategy is by adsorption of biomacromolecules. In this study, Ti6Al4V substrates produced by additive manufacturing (AM) were coated with whey protein isolate (WPI) fibrils, obtained at pH 2, and heparin or tinzaparin (a low molecular weight heparin LMWH) in order to improve the proliferation and differentiation of bone-forming cells. WPI fibrils proved to be an excellent support for the growth of human bone marrow stromal cells (hBMSC). Indeed, WPI fibrils were resistant to sterilization and were stable during storage. This WPI-heparin-enriched coating, especially the LMWH, enhanced the differentiation of hBMSC by increasing tissue non-specific alkaline phosphatase (TNAP) activity. Finally, the coating increased the hydrophilicity of the material. The results confirmed that WPI fibrils are an excellent biomaterial which can be used for biomedical coatings, as they are easily modifiable and resistant to heat treatments. Indeed, the already known positive effect on osteogenic integration of WPI-only coated substrates has been further enhanced by a simple adsorption procedure.


Asunto(s)
Aleaciones/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Heparina/farmacología , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Titanio/farmacología , Proteína de Suero de Leche/farmacología , Adulto , Fosfatasa Alcalina/metabolismo , Materiales Biocompatibles/farmacología , Huesos/efectos de los fármacos , Huesos/metabolismo , Células Cultivadas , Materiales Biocompatibles Revestidos/farmacología , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...