Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 9: 794676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926432

RESUMEN

Apolipoprotein-based drug delivery is a promising approach to develop safe nanoparticles capable of targeted drug delivery for various diseases. In this work, we have synthesized a lipid-based nanoparticle (NPs) that we have called "Aposomes" presenting native apolipoprotein B-100 (apoB-100), the primary protein present in Low-Density Lipoproteins (LDL) on its surface. The aposomes were synthesized from LDL isolated from blood plasma using a microfluidic approach. The synthesized aposomes had a diameter of 91 ± 4 nm and a neutral surface charge of 0.7 mV ± mV. Protein analysis using western blot and flow cytometry confirmed the presence of apoB-100 on the nanoparticle's surface. Furthermore, Aposomes retained liposomes' drug loading capabilities, demonstrating a prolonged release curve with ∼80% cargo release at 4 hours. Considering the natural tropism of LDL towards the atherosclerotic plaques, we evaluated the biological properties of aposomes in a mouse model of advanced atherosclerosis. We observed a ∼20-fold increase in targeting of plaques when comparing aposomes to control liposomes. Additionally, aposomes presented a favorable biocompatibility profile that showed no deviation from typical values in liver toxicity markers (i.e., LDH, ALT, AST, Cholesterol). The results of this study demonstrate the possibilities of using apolipoprotein-based approaches to create nanoparticles with active targeting capabilities and could be the basis for future cardiovascular therapies.

2.
Adv Sci (Weinh) ; 8(19): e2101437, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34382379

RESUMEN

Nanovesicles (NVs) are emerging as innovative, theranostic tools for cargo delivery. Recently, surface engineering of NVs with membrane proteins from specific cell types has been shown to improve the biocompatibility of NVs and enable the integration of functional attributes. However, this type of biomimetic approach has not yet been explored using human neural cells for applications within the nervous system. Here, this paper optimizes and validates the scalable and reproducible production of two types of neuron-targeting NVs, each with a distinct lipid formulation backbone suited to potential therapeutic cargo, by integrating membrane proteins that are unbiasedly sourced from human pluripotent stem-cell-derived neurons. The results establish that both endogenous and genetically engineered cell-derived proteins effectively transfer to NVs without disruption of their physicochemical properties. NVs with neuron-derived membrane proteins exhibit enhanced neuronal association and uptake compared to bare NVs. Viability of 3D neural sphere cultures is not disrupted by treatment, which verifies the utility of organoid-based approaches as NV testing platforms. Finally, these results confirm cellular association and uptake of the biomimetic humanized NVs to neurons within rodent cranial nerves. In summary, the customizable NVs reported here enable next-generation functionalized theranostics aimed to promote neuroregeneration.


Asunto(s)
Materiales Biomiméticos/metabolismo , Biomimética/métodos , Vesículas Extracelulares/metabolismo , Nanoestructuras/química , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Comunicación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
3.
ACS Nano ; 15(4): 6326-6339, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33724785

RESUMEN

Biomimetic nanoparticles aim to effectively emulate the behavior of either cells or exosomes. Leukocyte-based biomimetic nanoparticles, for instance, incorporate cell membrane proteins to transfer the natural tropism of leukocytes to the final delivery platform. However, tuning the protein integration can affect the in vivo behavior of these nanoparticles and alter their efficacy. Here we show that, while increasing the protein:lipid ratio to a maximum of 1:20 (w/w) maintained the nanoparticle's structural properties, increasing protein content resulted in improved targeting of inflamed endothelium in two different animal models. Our combined use of a microfluidic, bottom-up approach and tuning of a key synthesis parameter enabled the synthesis of reproducible, enhanced biomimetic nanoparticles that have the potential to improve the treatment of inflammatory-based conditions through targeted nanodelivery.


Asunto(s)
Materiales Biomiméticos , Exosomas , Nanopartículas , Animales , Biomimética , Inflamación/tratamiento farmacológico , Leucocitos
4.
Nanomaterials (Basel) ; 10(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143238

RESUMEN

Efficient communication is essential in all layers of the biological chain. Cells exchange information using a variety of signaling moieties, such as small molecules, proteins, and nucleic acids. Cells carefully package these messages into lipid complexes, collectively named extracellular vesicles (EVs). In this work, we discuss the nature of these cell carriers, categorize them by their origin, explore their role in the homeostasis of healthy tissues, and examine how they regulate the pathophysiology of several diseases. This review will also address the limitations of using EVs for clinical applications and discuss novel methods to engineer nanoparticles to mimic the structure, function, and features of EVs. Using lessons learned from nature and understanding how cells use EVs to communicate across distant sites, we can develop a better understanding of how to tailor the fundamental features of drug delivery carriers to encapsulate various cargos and target specific sites for biomedicine and bioengineering.

5.
Artículo en Inglés | MEDLINE | ID: mdl-32626700

RESUMEN

Nanoparticle-based drug delivery systems have been synthesized from a wide array of materials. The therapeutic success of these platforms hinges upon their ability to favorably interact with the biological environment (both systemically and locally) and recognize the diseased target tissue. The immune system, composed of a highly coordinated organization of cells trained to recognize foreign bodies, represents a key mediator of these interactions. Although components of this system may act as a barrier to nanoparticle (NP) delivery, the immune system can also be exploited to target and trigger signaling cues that facilitate the therapeutic response stemming from systemic administration of NPs. The nano-bio interface represents the key facilitator of this communication exchange, where the surface properties of NPs govern their in vivo fate. Cell membrane-based biomimetic nanoparticles have emerged as one approach to achieve targeted drug delivery by actively engaging and communicating with the biological milieu. In this review, we will highlight the relationship between these biomimetic nanoparticles and the immune system, emphasizing the role of tuning the nano-bio interface in the immunomodulation of diseases. We will also discuss the therapeutic applications of this approach with biomimetic nanoparticles, focusing on specific diseases ranging from cancer to infectious diseases. Lastly, we will provide a critical evaluation on the current state of this field of cell membrane-based biomimetic nanoparticles and its future directions in immune-based therapy.

6.
Sci Rep ; 10(1): 172, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932600

RESUMEN

Despite recent advances in drug delivery, the targeted treatment of unhealthy cells or tissues continues to remain a priority. In cancer (much like other pathologies), delivery vectors are designed to exploit physical and biological features of unhealthy tissues that are not always homogenous across the disease. In some cases, shifting the target from unhealthy tissues to the whole organ can represent an advantage. Specifically, the natural organ-specific retention of nanotherapeutics following intravenous administration as seen in the lung, liver, and spleen can be strategically exploited to enhance drug delivery. Herein, we outline the development of a cell-based delivery system using macrophages as a delivery vehicle. When loaded with a chemotherapeutic payload (i.e., doxorubicin), these cellular vectors (CELVEC) were shown to provide continued release within the lung. This study provides proof-of-concept evidence of an alternative class of biomimetic delivery vectors that capitalize on cell size to provide therapeutic advantages for pulmonary treatments.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Biomimética , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Pulmón/metabolismo , Macrófagos/química , Animales , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Liberación de Fármacos , Liposomas , Pulmón/citología , Masculino , Ratones , Ratones Desnudos , Distribución Tisular
7.
Circ Res ; 126(1): 25-37, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31647755

RESUMEN

RATIONALE: Through localized delivery of rapamycin via a biomimetic drug delivery system, it is possible to reduce vascular inflammation and thus the progression of vascular disease. OBJECTIVE: Use biomimetic nanoparticles to deliver rapamycin to the vessel wall to reduce inflammation in an in vivo model of atherosclerosis after a short dosing schedule. METHODS AND RESULTS: Biomimetic nanoparticles (leukosomes) were synthesized using membrane proteins purified from activated J774 macrophages. Rapamycin-loaded nanoparticles were characterized using dynamic light scattering and were found to have a diameter of 108±2.3 nm, a surface charge of -15.4±14.4 mV, and a polydispersity index of 0.11 +/ 0.2. For in vivo studies, ApoE-/- mice were fed a high-fat diet for 12 weeks. Mice were injected with either PBS, free rapamycin (5 mg/kg), or rapamycin-loaded leukosomes (Leuko-Rapa; 5 mg/kg) once daily for 7 days. In mice treated with Leuko-Rapa, flow cytometry of disaggregated aortic tissue revealed fewer proliferating macrophages in the aorta (15.6±9.79 %) compared with untreated mice (30.2±13.34 %) and rapamycin alone (26.8±9.87 %). Decreased macrophage proliferation correlated with decreased levels of MCP (monocyte chemoattractant protein)-1 and IL (interleukin)-b1 in mice treated with Leuko-Rapa. Furthermore, Leuko-Rapa-treated mice also displayed significantly decreased MMP (matrix metalloproteinases) activity in the aorta (mean difference 2554±363.9, P=9.95122×10-6). No significant changes in metabolic or inflammation markers observed in liver metabolic assays. Histological analysis showed improvements in lung morphology, with no alterations in heart, spleen, lung, or liver in Leuko-Rapa-treated mice. CONCLUSIONS: We showed that our biomimetic nanoparticles showed a decrease in proliferating macrophage population that was accompanied by the reduction of key proinflammatory cytokines and changes in plaque morphology. This proof-of-concept showed that our platform was capable of suppressing macrophage proliferation within the aorta after a short dosing schedule (7 days) and with a favorable toxicity profile. This treatment could be a promising intervention for the acute stabilization of late-stage plaques.


Asunto(s)
Aortitis/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Diana Mecanicista del Complejo 1 de la Rapamicina/efectos de los fármacos , Placa Aterosclerótica/prevención & control , Sirolimus/administración & dosificación , 1,2-Dipalmitoilfosfatidilcolina/administración & dosificación , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Aortitis/complicaciones , Aortitis/patología , Apolipoproteínas E/deficiencia , Aterosclerosis/patología , Biomimética , Proteína C-Reactiva/metabolismo , Microscopía por Crioelectrón , Citocinas/metabolismo , Evaluación Preclínica de Medicamentos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteínas de la Membrana/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Neovascularización Patológica/prevención & control , Especificidad de Órganos , Fosfatidilcolinas/administración & dosificación , Distribución Aleatoria , Sirolimus/farmacología , Sirolimus/uso terapéutico
8.
Adv Healthc Mater ; 7(17): e1800490, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29995315

RESUMEN

Regenerative medicine technologies rely heavily on the use of well-designed biomaterials for therapeutic applications. The success of implantable biomaterials hinges upon the ability of the chosen biomaterial to negotiate with the biological barriers in vivo. The most significant of these barriers is the immune system, which is composed of a highly coordinated organization of cells that induce an inflammatory response to the implanted biomaterial. Biomimetic platforms have emerged as novel strategies that aim to use the principle of biomimicry as a means of immunomodulation. This principle has manifested itself in the form of biomimetic scaffolds that imitate the composition and structure of biological cells and tissues. Recent work in this area has demonstrated the promising potential these technologies hold in overcoming the barrier of the immune system and, thereby, improve their overall therapeutic efficacy. In this review, a broad overview of the use of these strategies across several diseases and future avenues of research utilizing these platforms is provided.


Asunto(s)
Materiales Biocompatibles/química , Biomimética/métodos , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos
9.
Mol Cancer Res ; 15(12): 1777-1791, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28923841

RESUMEN

Rhabdomyosarcoma (RMS), a cancer characterized by skeletal muscle features, is the most common soft-tissue sarcoma of childhood. While low- and intermediate-risk groups have seen improved outcomes, high-risk patients still face a 5-year survival rate of <30%, a statistic that has not changed in over 40 years. Understanding the biologic underpinnings of RMS is critical. The developmental pathways of Notch and YAP have been identified as potent but independent oncogenic signals that support the embryonal variant of RMS (eRMS). Here, the cross-talk between these pathways and the impact on eRMS tumorigenesis is reported. Using human eRMS cells grown as three-dimensional (3D) rhabdospheres, which enriches in stem cells, it was found that Notch signaling transcriptionally upregulates YAP1 gene expression and YAP activity. Reciprocally, YAP transcriptionally upregulates the Notch ligand genes JAG1 and DLL1 and the core Notch transcription factor RBPJ This bidirectional circuit boosts expression of key stem cell genes, including SOX2, which is functionally required for eRMS spheres. Silencing this circuit for therapeutic purposes may be challenging, because the inhibition of one node (e.g., pharmacologic Notch blockade) can be rescued by upregulation of another (constitutive YAP expression). Instead, dual inhibition of Notch and YAP is necessary. Finally, supporting the existence of this circuit beyond a model system, nuclear Notch and YAP protein expression are correlated in human eRMS tumors, and YAP suppression in vivo decreases Notch signaling and SOX2 expression.Implications: This study identifies a novel oncogenic signaling circuit driving eRMS stemness and tumorigenesis, and provides evidence and rationale for combination therapies co-targeting Notch and YAP. Mol Cancer Res; 15(12); 1777-91. ©2017 AACR.


Asunto(s)
Carcinogénesis/genética , Proteínas Nucleares/genética , Receptores Notch/genética , Rabdomiosarcoma Embrionario/genética , Factores de Transcripción/genética , Proteínas de Unión al Calcio , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Jagged-1/genética , Proteínas de la Membrana/genética , Células Madre Neoplásicas/patología , Rabdomiosarcoma Embrionario/tratamiento farmacológico , Rabdomiosarcoma Embrionario/patología , Factores de Transcripción SOXB1/genética , Transducción de Señal/genética
10.
Biomaterials ; 147: 155-168, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28946131

RESUMEN

The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles' surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter. Building off these observations, we provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. We describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles.


Asunto(s)
Materiales Biomiméticos/química , Portadores de Fármacos/química , Nanopartículas/química , Virus/química , Animales , Biomimética , Células Sanguíneas/química , Células Sanguíneas/fisiología , Exosomas/química , Exosomas/fisiología , Humanos , Tamaño de la Partícula , Propiedades de Superficie , Fenómenos Fisiológicos de los Virus
11.
FASEB J ; 29(11): 4512-22, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26178165

RESUMEN

Tissue remodeling is a characteristic of many solid tumor malignancies including melanoma. By virtue of tumor lymphatic transport, remodeling pathways active within the local tumor microenvironment have the potential to be operational within lymph nodes (LNs) draining the tumor interstitium. Here, we show that lymphatic drainage from murine B16 melanomas in syngeneic, immune-competent C57Bl/6 mice is associated with LN enlargement as well as nonuniform increases in bulk tissue elasticity and viscoelasticity, as measured by the response of whole LNs to compression. These remodeling responses, which quickly manifest in tumor-draining lymph nodes (TDLNs) after tumor inoculation and before apparent metastasis, were accompanied by changes in matrix composition, including up to 3-fold increases in the abundance of soluble collagen and hyaluronic acid. Intranodal pressures were also significantly increased in TDLNs (+1 cmH2O) relative to both non-tumor-draining LNs (-1 cmH2O) and LNs from naive animals (-1 to 2 cmH2O). These data suggest that the reorganization of matrix structure, composition, and fluid microenvironment within LNs associated with tumor lymphatic drainage parallels remodeling seen in primary malignancies and has the potential to regulate the adhesion, proliferation, and signaling function of LN-resident cells involved in directing melanoma disease progression.


Asunto(s)
Proliferación Celular , Ganglios Linfáticos/metabolismo , Melanoma/metabolismo , Transducción de Señal , Microambiente Tumoral , Animales , Adhesión Celular , Línea Celular Tumoral , Ganglios Linfáticos/patología , Melanoma/patología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...