Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Acta Crystallogr D Struct Biol ; 79(Pt 11): 992-1009, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37860961

RESUMEN

A bacterial phosphotriesterase was employed as an experimental paradigm to examine the effects of multiple factors, such as the molecular constructs, the ligands used during protein expression and purification, the crystallization conditions and the space group, on the visualization of molecular complexes of ligands with a target enzyme. In this case, the ligands used were organophosphates that are fragments of the nerve agents and insecticides on which the enzyme acts as a bioscavenger. 12 crystal structures of various phosphotriesterase constructs obtained by directed evolution were analyzed, with resolutions of up to 1.38 Å. Both apo forms and holo forms, complexed with the organophosphate ligands, were studied. Crystals obtained from three different crystallization conditions, crystallized in four space groups, with and without N-terminal tags, were utilized to investigate the impact of these factors on visualizing the organophosphate complexes of the enzyme. The study revealed that the tags used for protein expression can lodge in the active site and hinder ligand binding. Furthermore, the space group in which the protein crystallizes can significantly impact the visualization of bound ligands. It was also observed that the crystallization precipitants can compete with, and even preclude, ligand binding, leading to false positives or to the incorrect identification of lead drug candidates. One of the co-crystallization conditions enabled the definition of the spaces that accommodate the substituents attached to the P atom of several products of organophosphate substrates after detachment of the leaving group. The crystal structures of the complexes of phosphotriesterase with the organophosphate products reveal similar short interaction distances of the two partially charged O atoms of the P-O bonds with the exposed ß-Zn2+ ion and the buried α-Zn2+ ion. This suggests that both Zn2+ ions have a role in stabilizing the transition state for substrate hydrolysis. Overall, this study provides valuable insights into the challenges and considerations involved in studying the crystal structures of ligand-protein complexes, highlighting the importance of careful experimental design and rigorous data analysis in ensuring the accuracy and reliability of the resulting phosphotriesterase-organophosphate structures.


Asunto(s)
Hidrolasas de Triéster Fosfórico , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Cristalización , Ligandos , Reproducibilidad de los Resultados , Organofosfatos , Cristalografía por Rayos X
2.
Proteins ; 91(8): 1097-1115, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092778

RESUMEN

"Newly Born" proteins, devoid of detectable homology to any other proteins, known as orphan proteins, occur in a single species or within a taxonomically restricted gene family. They are generated by the expression of novel open reading frames, and appear throughout evolution. We were curious if three recently developed programs for predicting protein structures, namely, AlphaFold2, RoseTTAFold, and ESMFold, might be of value for comparison of such "Newly Born" proteins to random polypeptides with amino acid content similar to that of native proteins, which have been called "Never Born" proteins. The programs were used to compare the structures of two sets of "Never Born" proteins that had been expressed-Group 1, which had been shown experimentally to possess substantial secondary structure, and Group 3, which had been shown to be intrinsically disordered. Overall, although the models generated were scored as being of low quality, they nevertheless revealed some general principles. Specifically, all four members of Group 1 were predicted to be compact by all three algorithms, in agreement with the experimental data, whereas the members of Group 3 were predicted to be very extended, as would be expected for intrinsically disordered proteins, again consistent with the experimental data. These predicted differences were shown to be statistically significant by comparing their accessible surface areas. The three programs were then used to predict the structures of three orphan proteins whose crystal structures had been solved, two of which display novel folds. Surprisingly, only for the protein which did not have a novel fold, and was taxonomically restricted, rather than being a true orphan, did all three algorithms predict very similar, high-quality structures, closely resembling the crystal structure. Finally, they were used to predict the structures of seven orphan proteins with well-identified biological functions, whose 3D structures are not known. Two proteins, which were predicted to be disordered based on their sequences, are predicted by all three structure algorithms to be extended structures. The other five were predicted to be compact structures with only two exceptions in the case of AlphaFold2. All three prediction algorithms make remarkably similar and high-quality predictions for one large protein, HCO_11565, from a nematode. It is conjectured that this is due to many homologs in the taxonomically restricted family of which it is a member, and to the fact that the Dali server revealed several nonrelated proteins with similar folds. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Proteins:3.


Asunto(s)
Aprendizaje Profundo , Secuencia de Aminoácidos , Proteínas/química , Algoritmos , Aminoácidos
3.
FEBS J ; 290(13): 3383-3399, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808692

RESUMEN

Acid-ß-glucosidase (GCase, EC3.2.1.45), the lysosomal enzyme which hydrolyzes the simple glycosphingolipid, glucosylceramide (GlcCer), is encoded by the GBA1 gene. Biallelic mutations in GBA1 cause the human inherited metabolic disorder, Gaucher disease (GD), in which GlcCer accumulates, while heterozygous GBA1 mutations are the highest genetic risk factor for Parkinson's disease (PD). Recombinant GCase (e.g., Cerezyme® ) is produced for use in enzyme replacement therapy for GD and is largely successful in relieving disease symptoms, except for the neurological symptoms observed in a subset of patients. As a first step toward developing an alternative to the recombinant human enzymes used to treat GD, we applied the PROSS stability-design algorithm to generate GCase variants with enhanced stability. One of the designs, containing 55 mutations compared to wild-type human GCase, exhibits improved secretion and thermal stability. Furthermore, the design has higher enzymatic activity than the clinically used human enzyme when incorporated into an AAV vector, resulting in a larger decrease in the accumulation of lipid substrates in cultured cells. Based on stability-design calculations, we also developed a machine learning-based approach to distinguish benign from deleterious (i.e., disease-causing) GBA1 mutations. This approach gave remarkably accurate predictions of the enzymatic activity of single-nucleotide polymorphisms in the GBA1 gene that are not currently associated with GD or PD. This latter approach could be applied to other diseases to determine risk factors in patients carrying rare mutations.


Asunto(s)
Celulasas , Enfermedad de Gaucher , Enfermedad de Parkinson , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Enfermedad de Parkinson/genética , Heterocigoto , Mutación , Celulasas/genética
4.
Nucleic Acids Res ; 51(2): 806-830, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36130731

RESUMEN

Zalpha (Zα) domains bind to left-handed Z-DNA and Z-RNA. The Zα domain protein family includes cellular (ADAR1, ZBP1 and PKZ) and viral (vaccinia virus E3 and cyprinid herpesvirus 3 (CyHV-3) ORF112) proteins. We studied CyHV-3 ORF112, which contains an intrinsically disordered region and a Zα domain. Genome editing of CyHV-3 indicated that the expression of only the Zα domain of ORF112 was sufficient for normal viral replication in cell culture and virulence in carp. In contrast, its deletion was lethal for the virus. These observations revealed the potential of the CyHV-3 model as a unique platform to compare the exchangeability of Zα domains expressed alone in living cells. Attempts to rescue the ORF112 deletion by a broad spectrum of cellular, viral, and artificial Zα domains showed that only those expressing Z-binding activity, the capacity to induce liquid-liquid phase separation (LLPS), and A-to-Z conversion, could rescue viral replication. For the first time, this study reports the ability of some Zα domains to induce LLPS and supports the biological relevance of dsRNA A-to-Z conversion mediated by Zα domains. This study expands the functional diversity of Zα domains and stimulates new hypotheses concerning the mechanisms of action of proteins containing Zα domains.


Asunto(s)
ADN de Forma Z , Herpesviridae , Animales , Adenosina Desaminasa/metabolismo , Herpesviridae/genética , Herpesviridae/metabolismo , ARN Bicatenario , Carpas/virología
5.
Biochem Mol Biol Educ ; 49(5): 707-719, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34080750

RESUMEN

Proteopedia (proteopedia.org) is an open resource to explore the structure-function relationship of proteins and other biomolecules. This guide provides practical advice on how to incorporate Proteopedia into teaching the structure and function of proteins and other biomolecules. For 11 activities, we discuss desired outcomes, setting expectations, preparing students for the tasks, using resources within Proteopedia, and evaluating student work. We point out features of Proteopedia that make it especially suitable for teaching and give examples of how to avoid common pitfalls.


Asunto(s)
Proteínas , Estudiantes , Humanos , Enseñanza
6.
Protein Sci ; 30(5): 966-981, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33686648

RESUMEN

Stabilization of Torpedo californica acetylcholinesterase by the divalent cations Ca+2 , Mg+2 , and Mn+2 was investigated. All three substantially protect the enzyme from thermal inactivation. Electron paramagnetic resonance revealed one high-affinity binding site for Mn+2 and several much weaker sites. Differential scanning calorimetry showed a single irreversible thermal transition. All three cations raise both the temperature of the transition and the activation energy, with the transition becoming more cooperative. The crystal structures of the Ca+2 and Mg+2 complexes with Torpedo acetylcholinesterase were solved. A principal binding site was identified. In both cases, it consists of four aspartates (a 4D motif), within which the divalent ion is embedded, together with several water molecules. It makes direct contact with two of the aspartates, and indirect contact, via waters, with the other two. The 4D motif has been identified in 31 acetylcholinesterase sequences and 28 butyrylcholinesterase sequences. Zebrafish acetylcholinesterase also contains the 4D motif; it, too, is stabilized by divalent metal ions. The ASSAM server retrieved 200 other proteins that display the 4D motif, in many of which it is occupied by a divalent cation. It is a very versatile motif, since, even though tightly conserved in terms of RMSD values, it can contain from one to as many as three divalent metal ions, together with a variable number of waters. This novel motif, which binds primarily divalent metal ions, is shared by a broad repertoire of proteins. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Protein_Science:3.


Asunto(s)
Acetilcolinesterasa/química , Proteínas de Peces/química , Torpedo , Animales , Sitios de Unión , Cationes Bivalentes/química , Cristalografía por Rayos X , Estabilidad de Enzimas , Metales/química
7.
Acta Crystallogr D Struct Biol ; 77(Pt 2): 151-163, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33559605

RESUMEN

The web-based IceBear software is a versatile tool to monitor the results of crystallization experiments and is designed to facilitate supervisor and student communications. It also records and tracks all relevant information from crystallization setup to PDB deposition in protein crystallography projects. Fully automated data collection is now possible at several synchrotrons, which means that the number of samples tested at the synchrotron is currently increasing rapidly. Therefore, the protein crystallography research communities at the University of Oulu, Weizmann Institute of Science and Diamond Light Source have joined forces to automate the uploading of sample metadata to the synchrotron. In IceBear, each crystal selected for data collection is given a unique sample name and a crystal page is generated. Subsequently, the metadata required for data collection are uploaded directly to the ISPyB synchrotron database by a shipment module, and for each sample a link to the relevant ISPyB page is stored. IceBear allows notes to be made for each sample during cryocooling treatment and during data collection, as well as in later steps of the structure determination. Protocols are also available to aid the recycling of pins, pucks and dewars when the dewar returns from the synchrotron. The IceBear database is organized around projects, and project members can easily access the crystallization and diffraction metadata for each sample, as well as any additional information that has been provided via the notes. The crystal page for each sample connects the crystallization, diffraction and structural information by providing links to the IceBear drop-viewer page and to the ISPyB data-collection page, as well as to the structure deposited in the Protein Data Bank.


Asunto(s)
Cristalografía por Rayos X/métodos , Proteínas/química , Programas Informáticos , Bases de Datos de Proteínas , Internet
8.
Neuropharmacology ; 179: 108265, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32795461

RESUMEN

Computational approaches have proved valuable in elucidating structure/function relationships in the cholinesterases in the context of their unusual three-dimensional structure. In this review we survey several recent studies that have enhanced our understanding of how these enzymes function, and have utilized computational approaches both to modulate their activity and to improve the design of lead compounds for their inhibition. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Neuropharmacology:2.


Asunto(s)
Colinesterasas/química , Colinesterasas/fisiología , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Animales , Sitios de Unión/fisiología , Cristalografía por Rayos X/métodos , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
9.
F1000Res ; 92020.
Artículo en Inglés | MEDLINE | ID: mdl-32566135

RESUMEN

Structural bioinformatics provides the scientific methods and tools to analyse, archive, validate, and present the biomolecular structure data generated by the structural biology community. It also provides an important link with the genomics community, as structural bioinformaticians also use the extensive sequence data to predict protein structures and their functional sites. A very broad and active community of structural bioinformaticians exists across Europe, and 3D-Bioinfo will establish formal platforms to address their needs and better integrate their activities and initiatives. Our mission will be to strengthen the ties with the structural biology research communities in Europe covering life sciences, as well as chemistry and physics and to bridge the gap between these researchers in order to fully realize the potential of structural bioinformatics. Our Community will also undertake dedicated educational, training and outreach efforts to facilitate this, bringing new insights and thus facilitating the development of much needed innovative applications e.g. for human health, drug and protein design. Our combined efforts will be of critical importance to keep the European research efforts competitive in this respect. Here we highlight the major European contributions to the field of structural bioinformatics, the most pressing challenges remaining and how Europe-wide interactions, enabled by ELIXIR and its platforms, will help in addressing these challenges and in coordinating structural bioinformatics resources across Europe. In particular, we present recent activities and future plans to consolidate an ELIXIR 3D-Bioinfo Community in structural bioinformatics and propose means to develop better links across the community. These include building new consortia, organising workshops to establish data standards and seeking community agreement on benchmark data sets and strategies. We also highlight existing and planned collaborations with other ELIXIR Communities and other European infrastructures, such as the structural biology community supported by Instruct-ERIC, with whom we have synergies and overlapping common interests.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Biología Computacional/organización & administración , Europa (Continente) , Genómica , Humanos , Proteínas
10.
Int J Mol Sci ; 21(5)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121487

RESUMEN

Increasing attention is more and more directed toward the thermostable Phosphotriesterase-Like-Lactonase (PLL) family of enzymes, for the efficient and reliable decontamination of toxic nerve agents. In the present study, the DNA Staggered Extension Process (StEP) technique was utilized to obtain new variants of PLL enzymes. Divergent homologous genes encoding PLL enzymes were utilized as templates for gene recombination and yielded a new variant of SsoPox from Saccharolobus solfataricus. The new mutant, V82L/C258L/I261F/W263A (4Mut) exhibited catalytic efficiency of 1.6 × 105 M-1 s-1 against paraoxon hydrolysis at 70°C, which is more than 3.5-fold and 42-fold improved in comparison with C258L/I261F/W263A (3Mut) and wild type SsoPox, respectively. 4Mut was also tested with chemical warfare nerve agents including tabun, sarin, soman, cyclosarin and VX. In particular, 4Mut showed about 10-fold enhancement in the hydrolysis of tabun and soman with respect to 3Mut. The crystal structure of 4Mut has been solved at the resolution of 2.8 Å. We propose that, reorganization of dimer conformation that led to increased central groove volume and dimer flexibility could be the major determinant for the improvement in hydrolytic activity in the 4Mut.


Asunto(s)
Arildialquilfosfatasa/química , Arildialquilfosfatasa/metabolismo , Proteínas Mutantes/metabolismo , Multimerización de Proteína , Sulfolobus solfataricus/enzimología , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Dominio Catalítico , Dicroismo Circular , Evolución Molecular Dirigida , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Iones , Metales/química , Modelos Moleculares , Agentes Nerviosos/química , Hidrolasas de Triéster Fosfórico/química , Hidrolasas de Triéster Fosfórico/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Relación Estructura-Actividad , Temperatura
11.
Molecules ; 25(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155891

RESUMEN

Over recent decades, crystallographic software for data processing and structure refinement has improved dramatically, resulting in more accurate and detailed crystal structures. It is, therefore, sometimes valuable to have a second look at "old" diffraction data, especially when earlier interpretation of the electron density maps was rather difficult. Here, we present updated crystal structures of Drosophila melanogaster acetylcholinesterase (DmAChE) originally published in [Harel et al., Prot Sci (2000) 9:1063-1072], which reveal features previously unnoticed. Thus, previously unmodeled density in the native active site can be interpreted as stable acetylation of the catalytic serine. Similarly, a strong density in the DmAChE/ZA complex originally attributed to a sulfate ion is better interpreted as a small molecule that is covalently bound. This small molecule can be modeled as either a propionate or a glycinate. The complex is reminiscent of the carboxylate butyrylcholinesterase complexes observed in crystal structures of human butyrylcholinesterases from various sources, and demonstrates the remarkable ability of cholinesterases to stabilize covalent complexes with carboxylates. A very strong peak of density (10 σ) at covalent distance from the Cß of the catalytic serine is present in the DmAChE/ZAI complex. This can be undoubtedly attributed to an iodine atom, suggesting an unanticipated iodo/hydroxyl exchange between Ser238 and the inhibitor, possibly driven by the intense X-ray irradiation. Finally, the binding of tacrine-derived inhibitors, such as ZA (1DX4) or the iodinated analog, ZAI (1QON) results in the appearance of an open channel that connects the base of the active-site gorge to the solvent. This channel, which arises due to the absence of the conserved tyrosine present in vertebrate cholinesterases, could be exploited to design inhibitors specific to insect cholinesterases. The present study demonstrates that updated processing of older diffraction images, and the re-refinement of older diffraction data, can produce valuable information that could not be detected in the original analysis, and strongly supports the preservation of the diffraction images in public data banks.


Asunto(s)
Acetilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Drosophila melanogaster/enzimología , Diseño de Fármacos , Insecticidas/química , Tacrina/química , Animales , Sitios de Unión , Catálisis , Dominio Catalítico , Drosophila melanogaster/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
12.
Chem Biol Interact ; 319: 109007, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32087110

RESUMEN

Acetylcholinesterase (AChE) terminates cholinergic neurotransmission by hydrolyzing acetylcholine. The collagen-tailed AChE tetramer is a product of 2 genes, ACHE and ColQ. The AChE tetramer consists of 4 identical AChE subunits and one polyproline-rich peptide, whose function is to hold the 4 AChE subunits together. Our goal was to determine the amino acid sequence of the polyproline-rich peptide(s) in Torpedo californica AChE (TcAChE) tetramers to aid in the analysis of images that will be acquired by cryo-EM. Collagen-tailed AChE was solubilized from Torpedo californica electric organ, converted to 300 kDa tetramers by digestion with trypsin, and purified by affinity chromatography. Polyproline-rich peptides were released by denaturing the TcAChE tetramers in a boiling water bath, and reducing disulfide bonds with dithiothreitol. Carbamidomethylated peptides were separated from TcAChE protein on a spin filter before they were analyzed by liquid chromatography tandem mass spectrometry on a high resolution Orbitrap Fusion Lumos mass spectrometer. Of the 64 identified collagen-tail (ColQ) peptides, 60 were from the polyproline-rich region near the N-terminus of ColQ. The most abundant proline-rich peptides were SVNKCCLLTPPPPPMFPPPFFTETNILQE, at 40% of total mass-spectral signal intensity, and SVNKCCLLTPPPPPMFPPPFFTETNILQEVDLNNLPLEIKPTEPSCK, at 27% of total intensity. The high abundance of these 2 peptides makes them candidates for the principal form of the polyproline-rich peptide in the trypsin-treated TcAChE tetramers.


Asunto(s)
Acetilcolinesterasa/metabolismo , Péptidos/metabolismo , Torpedo/metabolismo , Secuencia de Aminoácidos , Animales , Colágeno/metabolismo
13.
Mol Biol Evol ; 37(4): 1133-1147, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873734

RESUMEN

Evolutionary trajectories are deemed largely irreversible. In a newly diverged protein, reversion of mutations that led to the functional switch typically results in loss of both the new and the ancestral functions. Nonetheless, evolutionary transitions where reversions are viable have also been described. The structural and mechanistic causes of reversion compatibility versus incompatibility therefore remain unclear. We examined two laboratory evolution trajectories of mammalian paraoxonase-1, a lactonase with promiscuous organophosphate hydrolase (OPH) activity. Both trajectories began with the same active-site mutant, His115Trp, which lost the native lactonase activity and acquired higher OPH activity. A neo-functionalization trajectory amplified the promiscuous OPH activity, whereas the re-functionalization trajectory restored the native activity, thus generating a new lactonase that lacks His115. The His115 revertants of these trajectories indicated opposite trends. Revertants of the neo-functionalization trajectory lost both the evolved OPH and the original lactonase activity. Revertants of the trajectory that restored the original lactonase function were, however, fully active. Crystal structures and molecular simulations show that in the newly diverged OPH, the reverted His115 and other catalytic residues are displaced, thus causing loss of both the original and the new activity. In contrast, in the re-functionalization trajectory, reversion compatibility of the original lactonase activity derives from mechanistic versatility whereby multiple residues can fulfill the same task. This versatility enables unique sequence-reversible compositions that are inaccessible when the active site was repurposed toward a new function.


Asunto(s)
Arildialquilfosfatasa/genética , Evolución Molecular Dirigida , Arildialquilfosfatasa/metabolismo , Epistasis Genética , Evolución Molecular , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo
14.
F1000Res ; 82019.
Artículo en Inglés | MEDLINE | ID: mdl-31824649

RESUMEN

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are now recognised as major determinants in cellular regulation. This white paper presents a roadmap for future e-infrastructure developments in the field of IDP research within the ELIXIR framework. The goal of these developments is to drive the creation of high-quality tools and resources to support the identification, analysis and functional characterisation of IDPs. The roadmap is the result of a workshop titled "An intrinsically disordered protein user community proposal for ELIXIR" held at the University of Padua. The workshop, and further consultation with the members of the wider IDP community, identified the key priority areas for the roadmap including the development of standards for data annotation, storage and dissemination; integration of IDP data into the ELIXIR Core Data Resources; and the creation of benchmarking criteria for IDP-related software. Here, we discuss these areas of priority, how they can be implemented in cooperation with the ELIXIR platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for an IDP Community in ELIXIR and is an appeal to identify and involve new stakeholders.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo
15.
Chem Biol Interact ; 309: 108699, 2019 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-31202688

RESUMEN

The crystal structures of truncated forms of cholinesterases provide good models for assessing the role of non-covalent interactions in dimer assembly in the absence of cross-linking disulfide bonds. These structures identify the four-helix bundle that serves as the interface for formation of acetylcholinesterase and butyrylcholinesterase dimers. Here we performed a theoretical comparison of the structural and energetic factors governing dimerization. This included identification of inter-subunit and intra-subunit hydrogen bonds and hydrophobic interactions, evaluation of solvent-accessible surfaces, and estimation of electrostatic contributions to dimerization. To reveal the contribution to dimerization of individual amino acids within the contact area, free energy perturbation alanine screening was performed. Markov state modelling shows that the loop between the α13 and α14 helices in BChE is unstable, and occupies 4 macro-states. The order of magnitude of mean first passage times between these macrostates is ~10-8 s. Replica exchange molecular dynamics umbrella sampling calculations revealed that the free energy of human BChE dimerization is -15.5 kcal/mol, while that for human AChE is -26.4 kcal/mol. Thus, the C-terminally truncated human butyrylcholinesterase dimer is substantially less stable than that of human acetylcholinesterase. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:CHEMBIOINT:1.


Asunto(s)
Acetilcolinesterasa/química , Butirilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Secuencia de Aminoácidos , Butirilcolinesterasa/metabolismo , Dimerización , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cadenas de Markov , Simulación de Dinámica Molecular , Conformación Proteica en Hélice alfa , Alineación de Secuencia , Electricidad Estática , Termodinámica
16.
Chem Biol Interact ; 310: 108715, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31226285

RESUMEN

Although the three-dimensional structures of mouse and Torpedo californica acetylcholinesterase are very similar, their responses to the covalent sulfonylating agents benzenesulfonyl fluoride and phenylmethylsulfonyl fluoride are qualitatively different. Both agents inhibit the mouse enzyme effectively by covalent modification of its active-site serine. In contrast, whereas the Torpedo enzyme is effectively inhibited by benzenesulfonyl fluoride, it is almost completely resistant to phenylmethylsulfonyl fluoride. A bottleneck midway down the active-site gorge in both enzymes restricts access of ligands to the active site at the bottom of the gorge. Molecular dynamics simulations revealed that the mouse enzyme is substantially more flexible than the Torpedo enzyme, suggesting that enhanced 'breathing motions' of the mouse enzyme relative to the Torpedo enzyme may explain why phenylmethylsulfonyl fluoride can reach the active site in mouse acetylcholinesterase, but not in the Torpedo enzyme. Accordingly, we performed docking of the two sulfonylating agents to the two enzymes, followed by molecular dynamics simulations. Whereas benzenesulfonyl fluoride closely approaches the active-site serine in both mouse and Torpedo acetylcholinesterase in such simulations, phenylmethylsulfonyl fluoride is able to approach the active-site serine of mouse acetylcholinesterase, but remains trapped above the bottleneck in the Torpedo enzyme. Our studies demonstrate that reliance on docking tools in drug design can produce misleading information. Docking studies should, therefore, also be complemented by molecular dynamics simulations in selection of lead compounds. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:CHEMBIOINT:2.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Diseño de Fármacos , Simulación de Dinámica Molecular , Animales , Bencenosulfonatos/metabolismo , Dominio Catalítico , Fluoruros/metabolismo , Humanos , Ratones/metabolismo , Simulación del Acoplamiento Molecular , Fluoruro de Fenilmetilsulfonilo/metabolismo , Especificidad de la Especie , Torpedo/metabolismo
17.
FEBS J ; 286(19): 3858-3873, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31152679

RESUMEN

Interleukin 24 (IL-24) is a cytokine with the potential to be an effective treatment for autoimmune diseases and cancer. However, its instability and difficulties in its production have hampered detailed biological and biophysical studies. We approached the challenges of IL-24 production by using the PROSS algorithm to design more stable variants of IL-24. We used homology models built from the sequences and known structures of IL-20 and IL-19 and predicted and produced several extensively mutated IL-24 variants that were highly stable and produced in large yields; one of them was crystallized (IL-24B, PDB ID 6GG1; 3D Interactive at http://proteopedia.org/w/Journal: FEBS_Journal:1). The mutated variants, however, lost most of their binding capacity to the extracellular parts of cognate receptors. While the affinity to the receptor 2 (IL-20R2) was preserved, the variants lost affinity to IL-20R1 and IL-22R1 (shared receptors 1). Back engineering of the variants revealed that reintroduction of a single IL-24 wild-type residue (T198) to the patch interacting with receptors 1 restored 80% of the binding affinity and signaling capacity, accompanied by an acceptable drop in the protein stability by 9 °C. Multiple sequence alignment explains the stabilizing effect of the mutated residues in the IL-24 variants by their presence in the related and more stable cytokines IL-20 and IL-19. Our homology-based approach can enhance existing methods for protein engineering and represents a viable alternative to study and produce difficult proteins for which only in silico structural information is available, estimated as >40% of all important drug targets.


Asunto(s)
Interleucinas/metabolismo , Receptores de Interleucina/metabolismo , Cristalografía por Rayos X , Células HeLa , Humanos , Unión Proteica , Transducción de Señal
18.
Eur J Med Chem ; 168: 58-77, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30798053

RESUMEN

Both cholinesterases (AChE and BChE) and kinases, such as GSK-3α/ß, are associated with the pathology of Alzheimer's disease. Two scaffolds, targeting AChE (tacrine) and GSK-3α/ß (valmerin) simultaneously, were assembled, using copper(I)-catalysed azide alkyne cycloaddition (CuAAC), to generate a new series of multifunctional ligands. A series of eight multi-target directed ligands (MTDLs) was synthesized and evaluated in vitro and in cell cultures. Molecular docking studies, together with the crystal structures of three MTDL/TcAChE complexes, with three tacrine-valmerin hybrids allowed designing an appropriate linker containing a 1,2,3-triazole moiety whose incorporation preserved, and even increased, the original inhibitory potencies of the two selected pharmacophores toward the two targets. Most of the new derivatives exhibited nanomolar affinity for both targets, and the most potent compound of the series displayed inhibitory potencies of 9.5 nM for human acetylcholinesterase (hAChE) and 7 nM for GSK-3α/ß. These novel dual MTDLs may serve as suitable leads for further development, since, in the micromolar range, they exhibited low cytotoxicity on a panel of representative human cell lines including the human neuroblastoma cell line SH-SY5Y. Moreover, these tacrine-valmerin hybrids displayed a good ability to penetrate the blood-brain barrier (BBB) without interacting with efflux pumps such as P-gp.


Asunto(s)
Acetilcolinesterasa/metabolismo , Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Triazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cristalografía por Rayos X , Perros , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química
19.
Proc Natl Acad Sci U S A ; 115(52): 13270-13275, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30538207

RESUMEN

The quaternary structures of the cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), are essential for their localization and function. Of practical importance, BChE is a promising therapeutic candidate for intoxication by organophosphate nerve agents and insecticides, and for detoxification of addictive substances. Efficacy of the recombinant enzyme hinges on its having a long circulatory half-life; this, in turn, depends strongly on its ability to tetramerize. Here, we used cryoelectron microscopy (cryo-EM) to determine the structure of the highly glycosylated native BChE tetramer purified from human plasma at 5.7 Å. Our structure reveals that the BChE tetramer is organized as a staggered dimer of dimers. Tetramerization is mediated by assembly of the C-terminal tryptophan amphiphilic tetramerization (WAT) helices from each subunit as a superhelical assembly around a central lamellipodin-derived oligopeptide with a proline-rich attachment domain (PRAD) sequence that adopts a polyproline II helical conformation and runs antiparallel. The catalytic domains within a dimer are asymmetrically linked to the WAT/PRAD. In the resulting arrangement, the tetramerization domain is largely shielded by the catalytic domains, which may contribute to the stability of the human BChE (HuBChE) tetramer. Our cryo-EM structure reveals the basis for assembly of the native tetramers and has implications for the therapeutic applications of HuBChE. This mode of tetramerization is seen only in the cholinesterases but may provide a promising template for designing other proteins with improved circulatory residence times.


Asunto(s)
Acetilcolinesterasa/química , Butirilcolinesterasa/química , Microscopía por Crioelectrón/métodos , Conformación Proteica , Multimerización de Proteína , Cristalografía por Rayos X , Humanos
20.
J Med Chem ; 61(17): 7630-7639, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30125110

RESUMEN

Acetylcholinesterase (AChE), a key enzyme in the central and peripheral nervous systems, is the principal target of organophosphorus nerve agents. Quaternary oximes can regenerate AChE activity by displacing the phosphyl group of the nerve agent from the active site, but they are poorly distributed in the central nervous system. A promising reactivator based on tetrahydroacridine linked to a nonquaternary oxime is also an undesired submicromolar reversible inhibitor of AChE. X-ray structures and molecular docking indicate that structural modification of the tetrahydroacridine might decrease inhibition without affecting reactivation. The chlorinated derivative was synthesized and, in line with the prediction, displayed a 10-fold decrease in inhibition but no significant decrease in reactivation efficiency. X-ray structures with the derivative rationalize this outcome. We thus show that rational design based on structural studies permits the refinement of new-generation pyridine aldoxime reactivators that may be more effective in the treatment of nerve agent intoxication.


Asunto(s)
Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Agentes Nerviosos/toxicidad , Relación Estructura-Actividad , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos/métodos , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Agentes Nerviosos/química , Cloruro de Obidoxima/farmacología , Compuestos Organofosforados/química , Compuestos Organofosforados/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA