Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 68(24): 3240-3251, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37980171

RESUMEN

Reducing soil salinization of croplands with optimized irrigation and water management is essential to achieve land degradation neutralization (LDN). The effectiveness and sustainability of various irrigation and water management measures to reduce basin-scale salinization remain uncertain. Here we used remote sensing to estimate the soil salinity of arid croplands from 1984 to 2021. We then use Bayesian network analysis to compare the spatial-temporal response of salinity to water management, including various irrigation and drainage methods, in ten large arid river basins: Nile, Tigris-Euphrates, Indus, Tarim, Amu, Ili, Syr, Junggar, Colorado, and San Joaquin. In basins at more advanced phases of development, managers implemented drip and groundwater irrigation and thus effectively controlled salinity by lowering groundwater levels. For the remaining basins using conventional flood irrigation, economic development and policies are crucial for establishing a virtuous circle of "improving irrigation systems, reducing salinity, and increasing agricultural incomes" which is necessary to achieve LDN.

2.
Glob Environ Change ; 82: 1-14, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37693692

RESUMEN

Deltas play a critical role in the ambition to achieve global sustainable development given their relatively large shares in population and productive croplands, as well as their precarious low-lying position between upstream river basin development and rising seas. The large pressures on these systems risk undermining the persistence of delta societies, economies, and ecosystems. We analyse possible future development in 49 deltas around the globe under the Shared Socio-economic and Representative Concentration Pathways until 2100. Population density, urban fraction, and total and irrigated cropland fraction are three to twelve times greater in these deltas, on average, than in the rest of the world. Maximum river water discharges are projected to increase by 11-33 % and river sediment discharges are projected to decrease 26-37 % on average, depending on the scenario. Regional sea-level rise reaches almost 1.0 m by 2100 for certain deltas in the worst-case scenario, increasing to almost 2.0 m of relative rise considering land subsidence. Extreme sea levels could be much higher still-reaching over 4.0 m by 2100 for six of the 49 deltas analysed. Socio-economic conditions to support adaptation are the weakest among deltas with the greatest pressures, compounding the challenge of sustainable development. Asian and African deltas stand out as having heightened socio-economic challenges-huge population and land use pressures in most Asian deltas and the Nile delta; low capacity for adaptation in most African deltas and the Irrawaddy delta. Although, deltas in other parts of the world are not immune from these and other pressures, either. Because of unique pressures and processes operating in deltas, as in other "hotspots" such as small islands, mountains, and semi-arid areas, we recommend greater consideration and conceptualisation of environmental processes in global sustainable development agendas and in the Integrated Assessment Models used to guide global policy.

3.
Environ Res Lett ; 17(8): 084017, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35928217

RESUMEN

Agricultural production in arid and semi-arid regions is particularly vulnerable to climate change, which, combined with projected food requirements, makes the sustainable management of water resources critical to ensure national and global food security. Using South Africa as an example, we map the spatial distribution of water use by seventeen major crops under current and future climate scenarios, and assess their sustainability in terms of water resources, using the water debt repayment time indicator. We find high water debts, indicating unsustainable production, for potatoes, pulses, grapes, cotton, rice, and wheat due to irrigation in arid areas. Climate change scenarios suggest an intensification of such pressure on water resources, especially in regions already vulnerable, with a country-scale increase in irrigation demand of between 6.5% and 32% by 2090. Future land use planning and management should carefully consider the spatial distribution and local sustainability of crop water requirements to reduce water consumption in water risk hotspots and guarantee long-term food security.

4.
Nat Commun ; 12(1): 4232, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244500

RESUMEN

Freshwater salinisation is a growing problem, yet cross-regional assessments of freshwater salinity status and the impact of agricultural and other sectoral uses are lacking. Here, we assess inland freshwater salinity patterns and evaluate its interactions with irrigation water use, across seven regional river basins (401 river sub-basins) around the world, using long-term (1980-2010) salinity observations. While a limited number of sub-basins show persistent salinity problems, many sub-basins temporarily exceeded safe irrigation water-use thresholds and 57% experience increasing salinisation trends. We further investigate the role of agricultural activities as drivers of salinisation and find common contributions of irrigation-specific activities (irrigation water withdrawals, return flows and irrigated area) in sub-basins of high salinity levels and increasing salinisation trends, compared to regions without salinity issues. Our results stress the need for considering these irrigation-specific drivers when developing management strategies and as a key human component in water quality modelling and assessment.

5.
Nature ; 574(7776): 90-94, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578485

RESUMEN

Groundwater is the world's largest freshwater resource and is critically important for irrigation, and hence for global food security1-3. Already, unsustainable groundwater pumping exceeds recharge from precipitation and rivers4, leading to substantial drops in the levels of groundwater and losses of groundwater from its storage, especially in intensively irrigated regions5-7. When groundwater levels drop, discharges from groundwater to streams decline, reverse in direction or even stop completely, thereby decreasing streamflow, with potentially devastating effects on aquatic ecosystems. Here we link declines in the levels of groundwater that result from groundwater pumping to decreases in streamflow globally, and estimate where and when environmentally critical streamflows-which are required to maintain healthy ecosystems-will no longer be sustained. We estimate that, by 2050, environmental flow limits will be reached for approximately 42 to 79 per cent of the watersheds in which there is groundwater pumping worldwide, and that this will generally occur before substantial losses in groundwater storage are experienced. Only a small decline in groundwater level is needed to affect streamflow, making our estimates uncertain for streams near a transition to reversed groundwater discharge. However, for many areas, groundwater pumping rates are high and environmental flow limits are known to be severely exceeded. Compared to surface-water use, the effects of groundwater pumping are markedly delayed. Our results thus reveal the current and future environmental legacy of groundwater use.


Asunto(s)
Mapeo Geográfico , Agua Subterránea/análisis , Lluvia , Ríos/química , Movimientos del Agua , Abastecimiento de Agua/métodos , Riego Agrícola/métodos , Organismos Acuáticos , Cambio Climático , Desecación , Sequías/estadística & datos numéricos , Ecosistema , Agua Dulce/análisis , Internacionalidad , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA