Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 180 Suppl 2: S1-S22, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123153

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Bases de Datos Factuales , Canales Iónicos , Ligandos , Receptores Citoplasmáticos y Nucleares
2.
Prog Mol Biol Transl Sci ; 193(1): 167-176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36357076

RESUMEN

GPR158 is an orphan G protein-coupled receptor (GPCR) that is broadly expressed in the brain and displays unique structural characteristics and signaling mechanisms. GPR158 is a binding partner for the regulator of G protein signaling 7 (RGS7) and augments its expression, subcellular localization, and catalytic activity. Recent cryo-electron microscopy (cryo-EM) studies have revealed the structure of GPR158 alone and in complex with RGS7. The GPR158-RGS7 complex is shown to be regulated by chronic stress exposure and is a modulator of stress-induced depression. This review highlights the signaling mechanism and function of GPR158-RGS7 and provides a context for the unique formation of GPCR-RGS complexes.


Asunto(s)
Proteínas RGS , Humanos , Microscopía por Crioelectrón , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Membrana Celular/metabolismo , Encéfalo/metabolismo
3.
Br J Pharmacol ; 178 Suppl 1: S1-S26, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529830

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15537. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Ligandos , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares
4.
Cell Rep ; 34(5): 108718, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535037

RESUMEN

The G protein alpha subunit o (Gαo) is one of the most abundant proteins in the nervous system, and pathogenic mutations in its gene (GNAO1) cause movement disorder. However, the function of Gαo is ill defined mechanistically. Here, we show that Gαo dictates neuromodulatory responsiveness of striatal neurons and is required for movement control. Using in vivo optical sensors and enzymatic assays, we determine that Gαo provides a separate transduction channel that modulates coupling of both inhibitory and stimulatory dopamine receptors to the cyclic AMP (cAMP)-generating enzyme adenylyl cyclase. Through a combination of cell-based assays and rodent models, we demonstrate that GNAO1-associated mutations alter Gαo function in a neuron-type-specific fashion via a combination of a dominant-negative and loss-of-function mechanisms. Overall, our findings suggest that Gαo and its pathological variants function in specific circuits to regulate neuromodulatory signals essential for executing motor programs.


Asunto(s)
AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Trastornos del Movimiento/genética , Animales , Humanos , Ratones
5.
eNeuro ; 8(2)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33402347

RESUMEN

The striatum plays a key role in both reward-related and affective behaviors and disruptions to this circuit contributes to depression and drug addiction. However, our understanding of the molecular factors that facilitate and modify these processes are incomplete. Striatal function is modulated by G-protein-coupled receptors (GPCRs) that process vast neuromodulatory inputs. GPCR signaling is negatively regulated by regulator of G-protein signaling (Rgs) proteins. In this study, we examine the role of striatal Rgs proteins in depressive-like and reward-related behaviors in male mice. Using a genetic mouse model with specific elimination of Rgs7 in striatal neurons we found that these mice exhibit an anxiolytic-like and antidepressant-like phenotype. In contrast, knock-out of Rgs9, an abundant Rgs protein in the same neuronal population did not affect the behavioral outcome in the depressive-like tests. Mice lacking striatal Rgs7 did not show significant differences in cocaine-induced psychomotor activation, sensitization or conditional place preference (CPP). Interestingly, loss of Rgs7 in the striatum made mice resilient to stress-induced but not drug-induced reinstatement of cocaine CPP. Analysis of striatal proteome revealed that loss of Rgs7 selectively affected expression of several networks, most prominently including proteins involved in translation and vesicular exocytosis. Together, these findings begin to demonstrate the specific contribution of Rgs7 acting in the striatum toward depression as it relates to stress-induced reinstatement of drug use.


Asunto(s)
Cocaína , Proteínas RGS , Animales , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Depresión , Masculino , Ratones , Proteínas RGS/genética , Transducción de Señal
6.
PLoS Biol ; 17(10): e3000477, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600280

RESUMEN

The striatum plays a fundamental role in motor learning and reward-related behaviors that are synergistically shaped by populations of D1 dopamine receptor (D1R)- and D2 dopamine receptor (D2R)-expressing medium spiny neurons (MSNs). How various neurotransmitter inputs converging on common intracellular pathways are parsed out to regulate distinct behavioral outcomes in a neuron-specific manner is poorly understood. Here, we reveal that distinct contributions of D1R-MSNs and D2R-MSNs towards reward and motor behaviors are delineated by the multifaceted signaling protein neurofibromin 1 (NF1). Using genetic mouse models, we show that NF1 in D1R-MSN modulates opioid reward, whereas loss of NF1 in D2R-MSNs delays motor learning by impeding the formation and consolidation of repetitive motor sequences. We found that motor learning deficits upon NF1 loss were associated with the disruption in dopamine signaling to cAMP in D2R-MSN. Restoration of cAMP levels pharmacologically or chemogenetically rescued the motor learning deficits seen upon NF1 loss in D2R-MSN. Our findings illustrate that multiplex signaling capabilities of MSNs are deployed at the level of intracellular pathways to achieve cell-specific control over behavioral outcomes.


Asunto(s)
Cuerpo Estriado/fisiología , Neurofibromina 1/metabolismo , Neuronas/fisiología , Animales , AMP Cíclico/metabolismo , Dopamina/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Actividad Motora/fisiología , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Recompensa , Transducción de Señal
7.
J Biol Chem ; 294(35): 13145-13157, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311860

RESUMEN

Stress profoundly affects physiological properties of neurons across brain circuits and thereby increases the risk for depression. However, the molecular and cellular mechanisms mediating these effects are poorly understood. In this study, we report that chronic physical restraint stress in mice decreases excitability specifically in layer 2/3 of pyramidal neurons within the prelimbic subarea of the prefrontal cortex (PFC) accompanied by the induction of depressive-like behavioral states. We found that a complex between G protein-coupled receptor (GPCR) 158 (GPR158) and regulator of G protein signaling 7 (RGS7), a regulatory GPCR signaling node recently discovered to be a key modulator of affective behaviors, plays a key role in controlling stress-induced changes in excitability in this neuronal population. Deletion of GPR158 or RGS7 enhanced excitability of layer 2/3 PFC neurons and prevented the impact of stress. Investigation of the underlying molecular mechanisms revealed that the A-type potassium channel Kv4.2 subunit is a molecular target of the GPR158-RGS7 complex. We further report that GPR158 physically associates with Kv4.2 channel and promotes its function by suppressing inhibitory modulation by cAMP-protein kinase A (PKA)-mediated phosphorylation. Taken together, our observations reveal a critical mechanism that adjusts neuronal excitability in L2/3 pyramidal neurons of the PFC and may thereby modulate the effects of stress on depression.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas RGS/deficiencia , Receptores Acoplados a Proteínas G/deficiencia
8.
Neuropsychopharmacology ; 44(3): 642-653, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30546127

RESUMEN

Affective disorders arise from abnormal responses of the brain to prolonged exposure to challenging environmental stimuli. Recent work identified the orphan receptor GPR158 as a molecular link between chronic stress and depression. Here we reveal a non-canonical mechanism by which GPR158 exerts its effects on stress-induced depression by the complex formation with Regulator of G protein Signaling 7 (RGS7). Chronic stress promotes membrane recruitment of RGS7 via GPR158 in the medial prefrontal cortex (mPFC). The resultant complex suppresses homeostatic regulation of cAMP by inhibitory GPCRs in the region. Accordingly, RGS7 loss in mice induces an antidepressant-like phenotype and resiliency to stress, whereas its restoration within the mPFC is sufficient to rescue this phenotype in a GPR158-dependent way. These findings mechanistically link the unusual orphan receptor-RGS complex to a major stress mediator, the cAMP system and suggest new avenues for pharmacological interventions in affective disorders.


Asunto(s)
Conducta Animal/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Depresión/metabolismo , Homeostasis/fisiología , Corteza Prefrontal/metabolismo , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estrés Psicológico/metabolismo , Animales , Depresión/etiología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas RGS/deficiencia , Estrés Psicológico/complicaciones
9.
J Neurosci ; 38(32): 7120-7131, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30006367

RESUMEN

In the striatum, medium spiny neurons (MSNs) are heavily involved in controlling movement and reward. MSNs form two distinct populations expressing either dopamine receptor 1 (D1-MSN) or dopamine receptor 2 (D2-MSN), which differ in their projection targets and neurochemical composition. The activity of both types of MSNs is shaped by multiple neuromodulatory inputs processed by GPCRs that fundamentally impact their synaptic properties biasing behavioral outcomes. How these GPCR signaling cascades are regulated and what downstream targets they recruit in D1-MSN and D2-MSN populations are incompletely understood. In this study, we examined the cellular and molecular mechanisms underlying the action of RGS9-2, a key GPCR regulator in MSNs implicated in both movement control and actions of addictive drugs. Imaging cultured striatal neurons, we found that ablation of RGS9-2 significantly reduced calcium influx through NMDARs. Electrophysiological recordings in slices confirmed inhibition of NMDAR function in MSNs, resulting in enhanced AMPAR/NMDAR ratio. Accordingly, male mice lacking RGS9-2 displayed behavioral hypersensitivity to NMDAR blockade by MK-801 or ketamine. Recordings from genetically identified populations of striatal neurons revealed that these changes were selective to D2-MSNs. Surprisingly, we found that these postsynaptic effects resulted in remodeling of presynaptic inputs to D2-MSNs increasing the frequency of mEPSC and inhibiting paired-pulse ratio. Pharmacological dissection revealed that these adaptations were mediated by the NMDAR-dependent inhibition of retrograde endocannabinoid signaling from D2-MSNs to CB1 receptor on presynaptic terminals. Together, these data demonstrate a novel mechanism for pathway selective regulation of synaptic plasticity in MSNs controlled by GPCR signaling.SIGNIFICANCE STATEMENT This study identifies a role for a major G-protein regulator in controlling synaptic properties of striatal neurons in a pathway selective fashion.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/fisiología , Proteínas RGS/fisiología , Transmisión Sináptica/fisiología , Animales , Señalización del Calcio , Células Cultivadas , Cuerpo Estriado/citología , Neuronas Dopaminérgicas/química , Neuronas Dopaminérgicas/clasificación , Neuronas Dopaminérgicas/efectos de los fármacos , Endocannabinoides/fisiología , Conducta Exploratoria , Femenino , Genes Reporteros , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Proteínas RGS/deficiencia , Proteínas RGS/genética , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/fisiología , Receptores de Dopamina D2/análisis , Receptores de Dopamina D2/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Sinapsis/fisiología
10.
Elife ; 72018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29419376

RESUMEN

Stress can be a motivational force for decisive action and adapting to novel environment; whereas, exposure to chronic stress contributes to the development of depression and anxiety. However, the molecular mechanisms underlying stress-responsive behaviors are not fully understood. Here, we identified the orphan receptor GPR158 as a novel regulator operating in the prefrontal cortex (PFC) that links chronic stress to depression. GPR158 is highly upregulated in the PFC of human subjects with major depressive disorder. Exposure of mice to chronic stress also increased GPR158 protein levels in the PFC in a glucocorticoid-dependent manner. Viral overexpression of GPR158 in the PFC induced depressive-like behaviors. In contrast GPR158 ablation, led to a prominent antidepressant-like phenotype and stress resiliency. We found that GPR158 exerts its effects via modulating synaptic strength altering AMPA receptor activity. Taken together, our findings identify a new player in mood regulation and introduce a pharmacological target for managing depression.


Asunto(s)
Depresión/fisiopatología , Regulación de la Expresión Génica , Corteza Prefrontal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Estrés Psicológico , Animales , Humanos , Ratones
11.
Curr Biol ; 26(22): 2992-3003, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27773571

RESUMEN

It is well recognized that G-protein-coupled receptors (GPCRs) can activate Ras-regulated kinase pathways to produce lasting changes in neuronal function. Mechanisms by which GPCRs transduce these signals and their relevance to brain disorders are not well understood. Here, we identify a major Ras regulator, neurofibromin 1 (NF1), as a direct effector of GPCR signaling via Gßγ subunits in the striatum. We find that binding of Gßγ to NF1 inhibits its ability to inactivate Ras. Deletion of NF1 in striatal neurons prevents the opioid-receptor-induced activation of Ras and eliminates its coupling to Akt-mTOR-signaling pathway. By acting in the striatal medium spiny neurons of the direct pathway, NF1 regulates opioid-induced changes in Ras activity, thereby sensitizing mice to psychomotor and rewarding effects of morphine. These results delineate a novel mechanism of GPCR signaling to Ras pathways and establish a critical role of NF1 in opioid addiction.


Asunto(s)
Analgésicos Opioides/metabolismo , Neurofibromina 1/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Animales , Femenino , Masculino , Ratones , Neostriado/metabolismo , Neurofibromina 1/metabolismo , Neuronas/metabolismo , Unión Proteica
12.
Biol Psychiatry ; 80(3): 235-45, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-26364547

RESUMEN

BACKGROUND: Morphine mediates its euphoric and analgesic effects by acting on the µ-opioid receptor (MOR). MOR belongs to the family of G-protein coupled receptors whose signaling efficiency is controlled by the regulator of G-protein signaling (RGS) proteins. Our understanding of the molecular diversity of RGS proteins that control MOR signaling, their circuit specific actions, and underlying cellular mechanisms is very limited. METHODS: We used genetic approaches to ablate regulator of G-protein signaling 7 (RGS7) both globally and in specific neuronal populations. We used conditioned place preference and self-administration paradigms to examine reward-related behavior and a battery of tests to assess analgesia, tolerance, and physical dependence to morphine. Electrophysiology approaches were applied to investigate the impact of RGS7 on morphine-induced alterations in neuronal excitability and plasticity of glutamatergic synapses. At least three animals were used for each assessment. RESULTS: Elimination of RGS7 enhanced reward, increased analgesia, delayed tolerance, and heightened withdrawal in response to morphine administration. RGS7 in striatal neurons was selectively responsible for determining the sensitivity of rewarding and reinforcing behaviors to morphine without affecting analgesia, tolerance, and withdrawal. In contrast, deletion of RGS7 in dopaminergic neurons did not influence morphine reward. RGS7 exerted its effects by controlling morphine-induced changes in excitability of medium spiny neurons in nucleus accumbens and gating the compositional plasticity of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors. CONCLUSIONS: This study identifies RGS7 as a novel regulator of MOR signaling by dissecting its circuit specific actions and pinpointing its role in regulating morphine reward by controlling the activity of nucleus accumbens neurons.


Asunto(s)
Cuerpo Estriado/fisiología , Morfina/farmacología , Proteínas RGS/metabolismo , Recompensa , Transducción de Señal/efectos de los fármacos , Animales , Condicionamiento Psicológico , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Tolerancia a Medicamentos/fisiología , Femenino , Ácido Glutámico/fisiología , Masculino , Ratones , Ratones Noqueados , Neuronas/fisiología , Núcleo Accumbens/fisiología , Dimensión del Dolor/efectos de los fármacos , Proteínas RGS/genética , Proteínas RGS/fisiología , Autoadministración , Síndrome de Abstinencia a Sustancias/fisiopatología
13.
Neuropharmacology ; 99: 610-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26314207

RESUMEN

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that is involved in neuronal adaptions that underlie cocaine-induced sensitization and reward. mTOR exists in two functionally distinct multi-component complexes known as mTORC1 and mTORC2. In this study, we show that increased mTORC1 activity induced by cocaine is mediated by the dopamine D1 receptor (D1R). Specifically, cocaine treatment increased the phosphorylation on residues Thr2446 and Ser2481 but not on Ser2448 in the nucleus accumbens (NAc) and that this increase in phosphorylated mTOR levels was also apparent when complexed with its binding partner Raptor. Furthermore, the increase in phosphorylated mTOR levels, as well as phosphorylated 4E-BP1 and S6K, downstream targets of mTORC1 were blocked with SCH23390 treatment. Similar results were also observed in the dopamine-transporter knockout mice as the increase in phosphorylated mTOR Thr2446 and Ser2481 was blocked by SCH23390 but not with raclopride. To further validate D1R role in mTORC1 signaling, decrease in phosphorylated mTOR levels were observed in D1R knockout mice, whereas administration of SKF81297 elevated phosphorylated mTOR in the NAc. Lastly deletion of mTOR or Raptor in D1R expressing neurons reduced cocaine-induced locomotor activity. Together, our data supports a mechanism whereby mTORC1 signaling is activated by cocaine administration through the stimulation of D1R.


Asunto(s)
Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Complejos Multiproteicos/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Benzazepinas/farmacología , Dopaminérgicos/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Racloprida/farmacología , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , Proteína Reguladora Asociada a mTOR , Transducción de Señal/efectos de los fármacos
14.
Int J Neuropsychopharmacol ; 15(7): 965-79, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21777508

RESUMEN

The dopamine D2 receptor (D2DR) regulates Akt and may also target the Wnt pathway, two signalling cascades that inhibit glycogen synthase kinase-3 (GSK-3). This study examined whether the Wnt pathway is regulated by D2DR and the role of Akt and dishevelled-3 (Dvl-3) in regulating GSK-3 and the transcription factor ß-catenin in the rat brain. Western blotting showed that subchronic treatment of raclopride (D2DR antagonist) increase phosphorylated Akt, Dvl-3, GSK-3, phosphorylated GSK-3 and ß-catenin, whereas subchronic treatment of quinpirole (D2DR agonist) induced the opposite response. Co-immunopreciptations revealed an association between GSK-3 and the D2DR complex that was altered following raclopride and quinpirole, albeit in opposite directions. SCH23390 (D1DR antagonist) and nafadotride (D3DR antagonist) were also used to determine if the response was specific to the D2DR. Neither subchronic treatment affected Dvl-3, GSK-3, Akt nor ß-catenin protein levels, although nafadotride altered the phosphorylation state of Akt and GSK-3. In addition, in-vitro experiments were conducted to manipulate Akt and Dvl-3 activity in SH-SY5Y cells to elucidate how the pattern of change observed following manipulation of D2DR developed. Results indicate that Akt affects the phosphorylation state of GSK-3 but has no effect on ß-catenin levels. However, altering Dvl-3 levels resulted in changes in Akt and the Wnt pathway similar to what was observed following raclopride or quinpirole treatment. Collectively, the data suggests that the D2DR very specifically regulates Wnt and Akt signalling via Dvl-3.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fosfoproteínas/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Dopamina D2/metabolismo , Androstadienos/farmacología , Animales , Línea Celular Tumoral , Proteínas Dishevelled , Dopaminérgicos/farmacología , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoprecipitación , Masculino , Neuroblastoma/patología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Corteza Prefrontal/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/genética , Transducción de Señal/efectos de los fármacos , Transfección , Wortmanina , beta Catenina/metabolismo
15.
J Neurochem ; 117(6): 973-83, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21477044

RESUMEN

Metabotropic glutamate receptors 2/3 (mGlu(2/3)) have been implicated in schizophrenia and as a novel treatment target for schizophrenia. The current study examined whether mGlu(2/3) regulates Akt (protein kinase B) and Wnt (Wingless/Int-1) signaling, two cascades associated with schizophrenia and modified by antipsychotics. Western blotting revealed increases in phosphorylated Akt (pAkt) and phosphorylated glycogen synthase kinase-3 (pGSK-3) following acute and repeated treatment of LY379268 (mGlu(2/3) agonist), whereas increases in dishevelled-2 (Dvl-2), dishevelled-3 (Dvl-3), GSK-3 and ß-catenin were only observed following repeated treatment. LY341495 (mGlu(2/3) antagonist) induced the opposite response compared with LY379268. Co-immunoprecipitation experiments showed an association between the mGlu(2/3) complex and Dvl-2 providing a possible mechanism to explain how the mGlu(2/3) can mediate changes in Wnt signaling. However, there was no association between the mGlu(2/3) complex and Akt suggesting that changes in Akt signaling following LY341495 and LY379268 treatments may not be directly mediated by the mGlu(2/3) . Finally, an increase in locomotor activity induced by LY341495 treatment correlated with increased pAkt and pGSK-3 levels and was attenuated by the administration of the GSK-3 inhibitor, SB216763. Overall, the results suggest that mGlu(2/3) regulates Akt and Wnt signaling and LY379268 treatment has overlapping effects with D(2) dopamine receptor antagonists (antipsychotic drugs).


Asunto(s)
Aminoácidos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Proteínas Wnt/fisiología , Xantenos/farmacología , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Masculino , Actividad Motora/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal
16.
J Neurochem ; 102(1): 153-69, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17472703

RESUMEN

Protein kinase B (Akt), glycogen synthase kinase-3 (GSK-3) and members of the Wnt signal transduction pathway were recently found to be altered in schizophrenia and targeted by antipsychotic drugs. In the current study, selected Wnt signalling proteins were investigated to determine if they are altered by the antipsychotics clozapine or haloperidol in the rat prefrontal cortex. Pheochromocytoma (PC12) and neuroblastoma (SH-SY5Y) cells were also used to elucidate how antipsychotics generated the pattern of changes observed in vivo. Western blotting (WB) revealed that treatment with haloperidol or clozapine caused an up-regulation of Wnt-5a, dishevelled-3, Axin, total and phosphorylated GSK-3 and beta-catenin protein levels. Treatment of PC12 and SH-SY5Y cells with a variety of pharmacological agents as well as the over-expression of several Wnt related proteins failed to mimic the pattern observed in vivo following antipsychotic treatment. However, the over-expression of dishevelled-3 nearly perfectly duplicated the changes observed in vivo. Immunoprecipitations (IP) conducted using protein isolated from the rat prefrontal cortex indicated that dishevelled-3 is associated with the D2 dopamine receptor thereby suggesting that antipsychotics may act on dishevelled-3 via D2 dopamine receptors to initiate a cascade of downstream changes involving Axin, GSK-3 and beta-catenin that may help to alleviate psychosis in schizophrenic patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Antipsicóticos/farmacología , Clozapina/farmacología , Haloperidol/farmacología , Fosfoproteínas/genética , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/fisiología , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Animales , Antimaníacos/farmacología , Western Blotting , Línea Celular , Proteínas Dishevelled , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Inmunohistoquímica , Inmunoprecipitación , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Cloruro de Litio/farmacología , Masculino , Células PC12 , Fosfoproteínas/efectos de los fármacos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Ratas , Ratas Sprague-Dawley , Retroviridae/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...