Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4681, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824190

RESUMEN

The telomere sequence, TTAGGG, is conserved across all vertebrates and plays an essential role in suppressing the DNA damage response by binding a set of proteins termed shelterin. Changes in the telomere sequence impair shelterin binding, initiate a DNA damage response, and are toxic to cells. Here we identify a family with a variant in the telomere template sequence of telomerase, the enzyme responsible for telomere elongation, that led to a non-canonical telomere sequence. The variant is inherited across at least one generation and one family member reports no significant medical concerns despite ~9% of their telomeres converting to the novel sequence. The variant template disrupts telomerase repeat addition processivity and decreased the binding of the telomere-binding protein POT1. Despite these disruptions, the sequence is readily incorporated into cellular chromosomes. Incorporation of a variant sequence prevents POT1-mediated inhibition of telomerase suggesting that incorporation of a variant sequence may influence telomere addition. These findings demonstrate that telomeres can tolerate substantial degeneracy while remaining functional and provide insights as to how incorporation of a non-canonical telomere sequence might alter telomere length dynamics.


Asunto(s)
Linaje , Complejo Shelterina , Telomerasa , Proteínas de Unión a Telómeros , Telómero , Humanos , Telómero/metabolismo , Telómero/genética , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Complejo Shelterina/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Masculino , Femenino , Homeostasis del Telómero/genética , Secuencia de Bases , Adulto
2.
J Heart Lung Transplant ; 42(12): 1666-1677, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37544465

RESUMEN

BACKGROUND: Most idiopathic pulmonary fibrosis (IPF) lung transplant recipients (IPF-LTRs) have short telomere (ST) length. Inherited mutations in telomere-related genes are associated with the development of T cell immunodeficiency. Despite this, IPF-LTRs with telomere-related rare variants are not protected from acute cellular rejection (ACR). We set out to determine the impact of both age and telomere length on the circulating T cell compartment and ACR burden of IPF-LTRs. METHODS: We identified 106 IPF-LTRs who had telomere length testing using flowFISH (57 with short telomeres and 49 with long telomeres) as well as a subset from both cohorts who had cryopreserved PBMC at least 1 time point, 6 months posttransplantation. Circulating T cells from before transplantation and at 6 and 12 months posttransplantation were analyzed using multiparameter flow cytometry to study phenotype and functional capacity, and bulk T cell receptor sequencing was performed to study repertoire diversity. Linear regression was used to study the relationship of age and telomere length on early (within 1 year) and late (between 1 and 2 years) ACR. RESULTS: IPF-LTRs with ST were found to have premature "aging" of their circulating T cell compartment, with age-agnostic elevations in posttransplant terminal differentiation of CD8+ T cells, increased granzyme B positivity of both CD8+ and CD4+ T cells, upregulation of the exhaustion marker, CD57, and chemotactic protein CCR5, and enhanced T cell receptor clonal expansion. Additionally, we found a significant decline in early ACR burden with increasing age, but only in the ST cohort. CONCLUSIONS: IPF-LTRs with ST have premature "aging" of their circulating T cell compartment posttransplantation and a clear age-related decline in ACR burden.


Asunto(s)
Fibrosis Pulmonar Idiopática , Trasplante de Pulmón , Humanos , Lactante , Leucocitos Mononucleares , Linfocitos T CD8-positivos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/cirugía , Telómero , Receptores de Antígenos de Linfocitos T/genética
3.
Am J Transplant ; 23(10): 1590-1602, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37392813

RESUMEN

Idiopathic pulmonary fibrosis lung transplant recipients (IPF-LTRs) are enriched for short telomere length (TL) and telomere gene rare variants. A subset of patients with nontransplant short-TL are at increased risk for bone marrow (BM) dysfunction. We hypothesized that IPF-LTRs with short-TL and/or rare variants would be at increased risk for posttransplant hematologic complications. Data were extracted from a retrospective cohort of 72 IPF-LTRs and 72 age-matched non-IPF-LTR controls. Genetic assessment was done using whole genome sequencing or targeted sequence panel. TL was measured using flow cytometry and fluorescence in-situ hybridization (FlowFISH) and TelSeq software. The majority of the IPF-LTR cohort had short-TL, and 26% of IPF-LTRs had rare variants. Compared to non-IPF controls, short-TL IPF-LTRs were more likely to have immunosuppression agents discontinued due to cytopenias (P = .0375), and BM dysfunction requiring BM biopsy was more prevalent (29% vs 4%, P = .0003). IPF-LTRs with short-TL and rare variants had increased requirements for transfusion and growth factor support. Multivariable logistic regression demonstrated that short-TL, rare variants, and lower pretransplant platelet counts were associated with BM dysfunction. Pretransplant TL measurement and genetic testing for rare telomere gene variants identified IPF-LTRs at increased risk for hematologic complications. Our findings support stratification for telomere-mediated pulmonary fibrosis in lung transplant candidates.


Asunto(s)
Fibrosis Pulmonar Idiopática , Telomerasa , Humanos , Estudios Retrospectivos , Receptores de Trasplantes , Telomerasa/genética , Telomerasa/metabolismo , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/cirugía , Fibrosis Pulmonar Idiopática/patología , Telómero/genética , Telómero/metabolismo , Telómero/patología
4.
Hum Mutat ; 43(12): 2091-2101, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36135709

RESUMEN

The role of constitutional genetic defects in idiopathic pulmonary fibrosis (IPF) is increasingly appreciated. Monogenic disorders associated with IPF affect two pathways: telomere maintenance, accounting for approximately 10% of all patients with IPF, and surfactant biology, responsible for 1%-3% of cases and often co-occurring with lung cancer. We examined the prevalence of rare variants in five surfactant-related genes, SFTPA1, SFPTA2, SFTPC, ABCA3, and NKX2-1, that were previously linked to lung disease in whole genome sequencing data from 431 patients with IPF. We identified functionally deleterious rare variants in SFTPA2 with a prevalence of 1.3% in individuals with and without a family history of IPF. All individuals had no personal history of lung cancer, but substantial bronchiolar metaplasia was noted on lung explants and biopsies. Five patients had novel missense variants in NKX2-1, but the contribution to disease is unclear. In general, patients were younger and had longer telomeres compared with the majority of patients with IPF suggesting that these features may be useful for identifying this subset of patients in the clinic. These data suggest that SFTPA2 variants may be more common in unselected IPF cohorts and may manifest in the absence of personal/family history of lung cancer or IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias Pulmonares , Surfactantes Pulmonares , Humanos , Tensoactivos , Fibrosis Pulmonar Idiopática/genética , Mutación Missense , Neoplasias Pulmonares/genética
5.
J Heart Lung Transplant ; 41(5): 654-663, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34933798

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is the most common indication for lung transplantation in North America and variants in telomere-maintenance genes are the most common identifiable cause of IPF. We reasoned that younger IPF patients are more likely to undergo lung transplantation and we hypothesized that lung transplant recipients would be enriched for individuals with telomere-mediated disease due to the earlier onset and more severe disease in these patients. METHODS: Individuals with IPF who underwent lung transplantation or were evaluated in an interstitial lung disease specialty clinic who did not undergo lung transplantation were examined. Genetic evaluation was completed via whole genome sequencing (WGS) of 426 individuals and targeted sequencing for 5 individuals. Rare variants in genes previously associated with IPF were classified using the American College of Medical Genetics guidelines. Telomere length from WGS data was measured using TelSeq software. Patient characteristics were collected via medical record review. RESULTS: Of 431 individuals, 149 underwent lung transplantation for IPF. The median age of diagnosis of transplanted vs non-transplanted individuals was significantly younger (60 years vs 70 years, respectively, p<0.0001). IPF lung transplant recipients (IPF-LTRs) were twice as likely to have telomere-related rare variants compared to non-transplanted individuals (24% vs 12%, respectively, p=0.0013). IPF-LTRs had shorter telomeres than non-transplanted IPF patients (p=0.0028) and >85% had telomeres below the age-adjusted mean. Post-transplant survival and CLAD were similar amongst IPF-LTRs with rare variants in telomere-maintenance genes compared to those without, as well as in those with short telomeres versus longer telomeres. CONCLUSIONS: There is an enrichment for telomere-maintenance gene variants and short telomeres among IPF-LTRs. However, transplant outcomes of survival and CLAD do not differ by gene variants or telomere length within IPF-LTRs. Our findings support individual with telomere-mediated disease should not be excluded from lung transplantation and focusing research efforts on therapies directed toward individuals with short-telomere mediated disease.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Trasplante de Pulmón , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/cirugía , Persona de Mediana Edad , Telómero/genética , Acortamiento del Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...