Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Aspects Med ; 88: 101152, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36368281

RESUMEN

Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates. While a critical role for granzyme B in target cell apoptosis is undisputed, both it and the remaining granzymes also influence a variety of other biological processes (including important immunoregulatory functions), which are discussed in this review. This includes the targeting of many extracellular as well as intracellular substrates, and can also lead to deleterious outcomes for the host if granzyme expression or function are dysregulated or abrogated. A final important consideration is that granzyme repertoire, biochemistry and function vary considerably across species, probably resulting from the pressures applied by viruses and other pathogens across evolutionary time. This has implications for the interpretation of granzyme function in preclinical models of disease.


Asunto(s)
Serina , Linfocitos T Citotóxicos , Humanos , Granzimas/genética , Granzimas/metabolismo , Perforina , Linfocitos T Citotóxicos/metabolismo , Células Asesinas Naturales/metabolismo , Caspasas , Apoptosis
2.
J Med Chem ; 65(21): 14305-14325, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36263926

RESUMEN

New drugs that precisely target the immune mechanisms critical for cytotoxic T lymphocyte (CTL) and natural killer (NK) cell driven pathologies are desperately needed. In this perspective, we explore the cytolytic protein perforin as a target for therapeutic intervention. Perforin plays an indispensable role in CTL/NK killing and controls a range of immune pathologies, while being encoded by a single copy gene with no redundancy of function. An immunosuppressant targeting this protein would provide the first-ever therapy focused specifically on one of the principal cell death pathways contributing to allotransplant rejection and underpinning multiple autoimmune and postinfectious diseases. No drugs that selectively block perforin-dependent cell death are currently in clinical use, so this perspective will review published novel small molecule inhibitors, concluding with in vivo proof-of-concept experiments performed in mouse models of perforin-mediated immune pathologies that provide a potential pathway toward a clinically useful therapeutic agent.


Asunto(s)
Autoinmunidad , Citotoxicidad Inmunológica , Ratones , Animales , Perforina , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Inmunosupresores/metabolismo , Proteínas Citotóxicas Formadoras de Poros , Glicoproteínas de Membrana/metabolismo , Linfocitos T Citotóxicos
3.
Immunol Cell Biol ; 100(10): 761-776, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36106449

RESUMEN

The role of B-cell-activating factor (BAFF) in B-lymphocyte biology has been comprehensively studied, but its contributions to innate immunity remain unclear. Natural killer (NK) cells form the first line of defense against viruses and tumors, and have been shown to be defective in patients with systemic lupus erythematosus (SLE). The link between BAFF and NK cells in the development and progression of SLE remains unstudied. By assessing NK cell numbers in wild-type (WT), BAFF-/- (BAFF deficient), BAFF-R-/- (BAFF receptor deficient), TACI-/- (transmembrane activator and calcium modulator and cyclophilin ligand interactor deficient), BCMA-/- (B-cell maturation antigen deficient) and BAFF transgenic (Tg) mice, we observed that BAFF signaling through BAFF-R was essential for sustaining NK cell numbers in the spleen. However, according to the cell surface expression of CD27 and CD11b on NK cells, we found that BAFF was dispensable for NK cell maturation. Ex vivo and in vivo models showed that NK cells from BAFF-/- and BAFF Tg mice produced interferon-γ and killed tumor cells at a level similar to that in WT mice. Finally, we established that NK cells do not express receptors that interact with BAFF in the steady state or in the BAFF Tg mouse model of SLE. Our findings demonstrate that BAFF has an indirect effect on NK cell homeostasis and no effect on NK cell function.


Asunto(s)
Lupus Eritematoso Sistémico , Proteína Activadora Transmembrana y Interactiva del CAML , Ratones , Animales , Proteína Activadora Transmembrana y Interactiva del CAML/genética , Densidad de Población , Interleucina-4 , Ratones Transgénicos , Células Asesinas Naturales/metabolismo
4.
Sci Adv ; 8(37): eabm9427, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36103522

RESUMEN

The mechanism of action of eprenetapopt (APR-246, PRIMA-1MET) as an anticancer agent remains unresolved, although the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (SLC7A11, SHMT2, and MTHFD1L), as well as the enzymes required to synthesize glutathione (GCLC and GCLM), augments the activity of eprenetapopt. Eprenetapopt also inhibits iron-sulfur cluster biogenesis by limiting the cysteine desulfurase activity of NFS1, which potentiates ferroptosis and may restrict cellular proliferation. The combination of eprenetapopt with dietary serine and glycine restriction synergizes to inhibit esophageal xenograft tumor growth. These findings reframe the canonical view of eprenetapopt from a mutant-p53 reactivator to a ferroptosis inducer.

5.
ACS Pharmacol Transl Sci ; 5(6): 429-439, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35711815

RESUMEN

Perforin is a key effector of lymphocyte-mediated cell death pathways and contributes to transplant rejection of immunologically mismatched grafts. We have developed a novel series of benzenesulfonamide (BZS) inhibitors of perforin that can mitigate graft rejection during allogeneic bone marrow/stem cell transplantation. Eight such perforin inhibitors were tested for their murine pharmacokinetics, plasma protein binding, and their ability to block perforin-mediated lysis in vitro and to block the rejection of major histocompatibility complex (MHC)-mismatched mouse bone marrow cells. All compounds showed >99% binding to plasma proteins and demonstrated perforin inhibitory activity in vitro and in vivo. A lead compound, compound 1, that showed significant increases in allogeneic bone marrow preservation was evaluated for its plasma pharmacokinetics and in vivo efficacy at multiple dosing regimens to establish a pharmacokinetic/pharmacodynamic (PK/PD) relationship. The strongest PK/PD correlation was observed between perforin inhibition in vivo and time that total plasma concentrations remained above 900 µM, which correlates to unbound concentrations similar to 3× the unbound in vitro IC90 of compound 1. This PK/PD relationship will inform future dosing strategies of BZS perforin inhibitors to maintain concentrations above 3× the unbound IC90 for as long as possible to maximize efficacy and enhance progression toward clinical evaluation.

6.
Blood ; 139(12): 1833-1849, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35081253

RESUMEN

Niemann-Pick disease type C1 (NP-C1) is a rare lysosomal storage disorder resulting from mutations in an endolysosomal cholesterol transporter, NPC1. Despite typically presenting with pronounced neurological manifestations, NP-C1 also resembles long-term congenital immunodeficiencies that arise from impairment of cytotoxic T lymphocyte (CTL) effector function. CTLs kill their targets through exocytosis of the contents of lysosome-like secretory cytotoxic granules (CGs) that store and ultimately release the essential pore-forming protein perforin and proapoptotic serine proteases, granzymes, into the synapse formed between the CTL and target cell. We discovered that NPC1 deficiency increases CG lipid burden, impairs autophagic flux through stalled trafficking of the transcription factor EB (TFEB), and dramatically reduces CTL cytotoxicity. Using a variety of immunological and cell biological techniques, we found that the cytotoxic defect arises specifically from impaired perforin pore formation. We demonstrated defects of CTL function of varying severity in patients with NP-C1, with the greatest losses of function associated with the most florid and/or earliest disease presentations. Remarkably, perforin function and CTL cytotoxicity were restored in vitro by promoting lipid clearance with therapeutic 2-hydroxypropyl-ß-cyclodextrin; however, restoration of autophagy through TFEB overexpression was ineffective. Overall, our study revealed that NPC1 deficiency has a deleterious impact on CTL (but not natural killer cell) cytotoxicity that, in the long term, may predispose patients with NP-C1 to atypical infections and impaired immune surveillance more generally.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedad de Niemann-Pick Tipo C , Colesterol/metabolismo , Granzimas , Humanos , Enfermedad de Niemann-Pick Tipo C/metabolismo , Perforina/genética , Linfocitos T Citotóxicos/metabolismo
7.
Cancer Immunol Res ; 8(8): 1085-1098, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32444423

RESUMEN

The adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) is known to facilitate caspase-1 activation, which is essential for innate host immunity via the formation of the inflammasome complex, a multiprotein structure responsible for processing IL1ß and IL18 into their active moieties. Here, we demonstrated that ASC-deficient CD8+ T cells failed to induce severe graft-versus-host disease (GVHD) and had impaired capacity for graft rejection and graft-versus-leukemia (GVL) activity. These effects were inflammasome independent because GVHD lethality was not altered in recipients of caspase-1/11-deficient T cells. We also demonstrated that ASC deficiency resulted in a decrease in cytolytic function, with a reduction in granzyme B secretion and CD107a expression by CD8+ T cells. Altogether, our findings highlight that ASC represents an attractive therapeutic target for improving outcomes of clinical transplantation.


Asunto(s)
Trasplante de Médula Ósea/efectos adversos , Proteínas Adaptadoras de Señalización CARD/metabolismo , Linfocitos T CD8-positivos/inmunología , Enfermedad Injerto contra Huésped/inmunología , Inflamasomas/inmunología , Leucemia/terapia , Linfocitos T Citotóxicos/inmunología , Animales , Apoptosis , Caspasa 1/metabolismo , Modelos Animales de Enfermedad , Femenino , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/metabolismo , Inflamasomas/metabolismo , Leucemia/inmunología , Leucemia/patología , Ratones , Ratones Endogámicos BALB C
8.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140457, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32473350

RESUMEN

We investigated the molecular basis for the remarkably different survival outcomes of mice expressing different alloforms of the pro-apoptotic serine protease granzyme B to mouse cytomegalovirus infection. Whereas C57BL/6 mice homozygous for granzyme BP (GzmBP/P) raise cytotoxic T lymphocytes that efficiently kill infected cells, those of C57BL/6 mice congenic for the outbred allele (GzmBW/W) fail to kill MCMV-infected cells and died from uncontrolled hepatocyte infection and acute liver failure. We identified subtle differences in how GzmBP and GzmBW activate cell death signalling - both alloforms predominantly activated pro-caspases directly, and cleaved pro-apoptotic Bid poorly. Consequently, neither alloform initiated mitochondrial outer membrane permeabilization, or was blocked by Bcl-2, Bcl-XL or co-expression of MCMV proteins M38.5/M41.1, which together stabilize mitochondria by sequestering Bak/Bax. Remarkably, mass spectrometric analysis of proteins from MCMV-infected primary mouse embryonic fibroblasts identified 13 cleavage sites in nine viral proteins (M18, M25, M28, M45, M80, M98, M102, M155, M164) that were cleaved >20-fold more efficiently by either GzmBP or GzmBW. Notably, M18, M28, M45, M80, M98, M102 and M164 were cleaved 20- >100-fold more efficiently by GzmBW, and so, would persist in infected cells targeted by CTLs from GzmBP/P mice. Conversely, M155 was cleaved >100-fold more efficiently by GzmBP, and would persist in cells targeted by CTLs of GzmBW/W mice. M25 was cleaved efficiently by both proteases, but at different sites. We conclude that different susceptibility to MCMV does not result from skewed endogenous cell death pathways, but rather, to as yet uncharacterised MCMV-intrinsic pathways that ultimately inhibit granzyme B-induced cell death.


Asunto(s)
Granzimas/química , Granzimas/metabolismo , Muromegalovirus/inmunología , Péptidos/metabolismo , Animales , Apoptosis , Caspasas/metabolismo , Muerte Celular , Línea Celular , Modelos Animales de Enfermedad , Femenino , Granzimas/genética , Infecciones por Herpesviridae/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Péptidos/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especificidad por Sustrato , Linfocitos T Citotóxicos/inmunología , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Proteína bcl-X/metabolismo
9.
Transpl Int ; 32(11): 1203-1215, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31225919

RESUMEN

We have previously reported that ICOS-Ig expressed locally by a PIEC xenograft induces a perigraft cellular accumulation of CD4+ CD25+ Foxp3+ T cells and specific xenograft prolongation. In the present study we isolated and purified CD4+ CD25+ T cells from ICOS-Ig secreting PIEC grafts to examine their phenotype and mechanism of xenograft survival using knockout and mutant mice. CD4+ CD25+ T cells isolated from xenografts secreting ICOS-Ig were analysed by flow cytometry and gene expression by real-time PCR. Regulatory function was examined by suppression of xenogeneic or allogeneic primed CD4 T cells in vivo. Graft prolongation was shown to be dependent on a pre-existing Foxp3+ Treg, IL-10, perforin and granzyme B. CD4+ CD25+ Foxp3+ T cells isolated from xenografts secreting ICOS-Ig demonstrated a phenotype consistent with nTreg but with a higher expression of CD275 (ICOSL), expression of CD278 (ICOS) and MHC II and loss of CD73. Moreover, these cells were functional and specifically suppressed xenogeinic but not allogeneic primed T cells in vivo.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Supervivencia de Injerto , Xenoinjertos/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Animales , Apoptosis , Línea Celular , Factores de Transcripción Forkhead/metabolismo , Granzimas/metabolismo , Interleucina-10/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Perforina/metabolismo , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo
10.
Sci Immunol ; 3(23)2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776993

RESUMEN

Immunotherapy has revolutionized outcomes for cancer patients, but the mechanisms of resistance remain poorly defined. We used a series of whole-genome clustered regularly interspaced short palindromic repeat (CRISPR)-based screens performed in vitro and in vivo to identify mechanisms of tumor immune evasion from cytotoxic lymphocytes [CD8+ T cells and natural killer (NK) cells]. Deletion of key genes within the tumor necrosis factor (TNF) signaling, interferon-γ (IFN-γ) signaling, and antigen presentation pathways provided protection of tumor cells from CD8+ T cell-mediated killing and blunted antitumor immune responses in vivo. Deletion of a number of genes in the TNF pathway also emerged as the key mechanism of immune evasion from primary NK cells. Our screens also identified that the metabolic protein 2-aminoethanethiol dioxygenase (Ado) modulates sensitivity to TNF-mediated killing by cytotoxic lymphocytes and is required for optimal control of tumors in vivo. Remarkably, we found that tumors delete the same genes when exposed to perforin-deficient CD8+ T cells, demonstrating that the dominant immune evasion strategy used by tumor cells is acquired resistance to T cell-derived cytokine-mediated antitumor effects. We demonstrate that TNF-mediated bystander killing is a potent T cell effector mechanism capable of killing antigen-negative tumor cells. In addition to highlighting the importance of TNF in CD8+ T cell- and NK cell-mediated killing of tumor cells, our study also provides a comprehensive picture of the roles of the TNF, IFN, and antigen presentation pathways in immune-mediated tumor surveillance.


Asunto(s)
Interferón gamma/inmunología , Escape del Tumor/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Ratones
11.
FEBS J ; 283(5): 947-61, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26756195

RESUMEN

The anionic proteoglycan serglycin is a major constituent of secretory granules in cytotoxic T lymphocyte (CTL)/natural killer (NK) cells, and is proposed to promote the safe storage of the mostly cationic granule toxins, granzymes and perforin. Despite the extensive defects of mast cell function reported in serglycin gene-disrupted mice, no comprehensive study of physiologically relevant CTL/NK cell populations has been reported. We show that the cytotoxicity of serglycin-deficient CTL and NK cells is severely compromised but can be partly compensated in both cell types when they become activated. Reduced intracellular granzyme B levels were noted, particularly in CD27(+) CD11b(+) mature NK cells, whereas serglycin(-/-) TCR-transgenic (OTI) CD8 T cells also had reduced perforin stores. Culture supernatants from serglycin(-/-) OTI T cells and interleukin-2-activated NK contained increased granzyme B, linking reduced storage with heightened export. By contrast, granzyme A was not significantly reduced in cells lacking serglycin, indicating differentially regulated trafficking and/or storage for the two granzymes. A quantitative analysis of different granule classes by transmission electronmicroscopy showed a selective loss of dense-core granules in serglycin(-/-) CD8(+) CTLs, although other granule types were maintained quantitatively. The findings of the present study show that serglycin plays a critical role in the maturation of dense-core cytotoxic granules in cytotoxic lymphocytes and the trafficking and storage of perforin and granzyme B, whereas granzyme A is unaffected. The skewed retention of cytotoxic effector molecules markedly reduces CTL/NK cell cytotoxicity, although this is partly compensated for as a result of activating the cells by physiological means.


Asunto(s)
Células Asesinas Naturales/metabolismo , Proteoglicanos/metabolismo , Vesículas Secretoras/metabolismo , Linfocitos T Citotóxicos/citología , Proteínas de Transporte Vesicular/metabolismo , Animales , Antígeno CD11b/metabolismo , Linfocitos T CD8-positivos/citología , Separación Celular , Células Cultivadas , Cruzamientos Genéticos , Femenino , Citometría de Flujo , Granzimas/metabolismo , Masculino , Mastocitos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteolisis , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
12.
PLoS Pathog ; 10(12): e1004526, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25502180

RESUMEN

Many immune response genes are highly polymorphic, consistent with the selective pressure imposed by pathogens over evolutionary time, and the need to balance infection control with the risk of auto-immunity. Epidemiological and genomic studies have identified many genetic variants that confer susceptibility or resistance to pathogenic micro-organisms. While extensive polymorphism has been reported for the granzyme B (GzmB) gene, its relevance to pathogen immunity is unexplored. Here, we describe the biochemical and cytotoxic functions of a common allele of GzmB (GzmBW) common in wild mouse. While retaining 'Asp-ase' activity, GzmBW has substrate preferences that differ considerably from GzmBP, which is common to all inbred strains. In vitro, GzmBW preferentially cleaves recombinant Bid, whereas GzmBP activates pro-caspases directly. Recombinant GzmBW and GzmBP induced equivalent apoptosis of uninfected targets cells when delivered with perforin in vitro. Nonetheless, mice homozygous for GzmBW were unable to control murine cytomegalovirus (MCMV) infection, and succumbed as a result of excessive liver damage. Although similar numbers of anti-viral CD8 T cells were generated in both mouse strains, GzmBW-expressing CD8 T cells isolated from infected mice were unable to kill MCMV-infected targets in vitro. Our results suggest that known virally-encoded inhibitors of the intrinsic (mitochondrial) apoptotic pathway account for the increased susceptibility of GzmBW mice to MCMV. We conclude that different natural variants of GzmB have a profound impact on the immune response to a common and authentic viral pathogen.


Asunto(s)
Variación Genética/genética , Granzimas/genética , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/mortalidad , Muromegalovirus/inmunología , Virosis/inmunología , Virosis/mortalidad , Alelos , Secuencia de Aminoácidos , Animales , Apoptosis , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Caspasas/metabolismo , Modelos Animales de Enfermedad , Granzimas/análisis , Granzimas/deficiencia , Infecciones por Herpesviridae/patología , Inmunidad Innata/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Virosis/patología
13.
J Vis Exp ; (93): e52419, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25489668

RESUMEN

The serine protease Granzyme B (GzmB) mediates target cell apoptosis when released by cytotoxic T lymphocytes (CTL) or natural killer (NK) cells. GzmB is the most studied granzyme in humans and mice and therefore, researchers need specific and reliable tools to study its function and role in pathophysiology. This especially necessitates assays that do not recognize proteases such as caspases or other granzymes that are structurally or functionally related. Here, we apply GzmB's preference for cleavage after aspartic acid residues in a colorimetric assay using the peptide thioester Boc-Ala-Ala-Asp-S-Bzl. GzmB is the only mammalian serine protease capable of cleaving this substrate. The substrate is cleaved with similar efficiency by human, mouse and rat GzmB, a property not shared by other commercially available peptide substrates, even some that are advertised as being suitable for this purpose. This protocol is demonstrated using unfractionated lysates from activated NK cells or CTL and is also suitable for recombinant proteases generated in a variety of prokaryotic and eukaryotic systems, provided the correct controls are used. This assay is a highly specific method to ascertain the potential pro-apoptotic activity of cytotoxic molecules in mammalian lymphocytes, and of their recombinant counterparts expressed by a variety of methodologies.


Asunto(s)
Colorimetría/métodos , Granzimas/metabolismo , Oligopéptidos/metabolismo , Animales , Apoptosis/fisiología , Ácido Aspártico/metabolismo , Ésteres del Ácido Fórmico/metabolismo , Granzimas/análisis , Humanos , Hidrólisis , Células Asesinas Naturales/citología , Células Asesinas Naturales/enzimología , Células Asesinas Naturales/metabolismo , Ratones , Oligopéptidos/análisis , Proteolisis , Ratas , Serina Endopeptidasas/análisis , Serina Endopeptidasas/metabolismo , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/enzimología , Linfocitos T Citotóxicos/metabolismo
14.
Int Arch Allergy Immunol ; 165(1): 68-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25342632

RESUMEN

BACKGROUND: Many of the functions attributed to mast cells depend on the various pro-inflammatory mediators that are secreted upon mast cell activation. These include a panel of mast cell-specific proteases. In addition, recent studies have indicated that murine mast cells also express granzyme D, a protease previously thought to be confined to cytotoxic lymphocytes. Here, we address the human relevance of the latter findings by investigating whether human mast cells express granzyme H, the granzyme that may represent the functional counterpart to murine granzyme D. METHODS: Cord blood-derived mast cells, LAD2 cells and skin mast cells in situ were evaluated for their expression of granzymes using quantitative PCR, Western blot analysis and immunostaining. Mast cells were activated by either calcium ionophore stimulation or IgE receptor cross-linking. RESULTS: Cord blood-derived mast cells and LAD2 cells were shown to express granzyme H and B mRNA, while granzyme A, K and M expression was undetectable. Mast cell activation by either calcium ionophore or IgE receptor cross-linking caused down-regulated expression of granzyme H. In contrast, granzyme B expression was up-regulated by the same stimuli. Granzyme H expression was also confirmed at the protein level, as shown by both Western blot analysis and confocal microscopy. Further, we show that granzyme H is expressed by human skin mast cells in situ. CONCLUSIONS: The present findings implicate granzyme H as a novel protease expressed by human mast cells and support earlier findings obtained in natural killer cells suggesting that granzymes B and H are reciprocally regulated.


Asunto(s)
Granzimas/biosíntesis , Mastocitos/enzimología , Línea Celular , Granzimas/genética , Granzimas/metabolismo , Humanos , Inmunohistoquímica , Microscopía Confocal , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Blood ; 121(14): 2659-68, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23377437

RESUMEN

Cytotoxic lymphocytes serve a key role in immune homeostasis by eliminating virus-infected and transformed target cells through the perforin-dependent delivery of proapoptotic granzymes. However, the mechanism of granzyme entry into cells remains unresolved. Using biochemical approaches combined with time-lapse microscopy of human primary cytotoxic lymphocytes engaging their respective targets, we defined the time course of perforin pore formation in the context of the physiological immune synapse. We show that, on recognition of targets, calcium influx into the lymphocyte led to perforin exocytosis and target cell permeabilization in as little as 30 seconds. Within the synaptic cleft, target cell permeabilization by perforin resulted in the rapid diffusion of extracellular milieu-derived granzymes. Repair of these pores was initiated within 20 seconds and was completed within 80 seconds, thus limiting granzyme diffusion. Remarkably, even such a short time frame was sufficient for the delivery of lethal amounts of granzymes into the target cell. Rapid initiation of apoptosis was evident from caspase-dependent target cell rounding within 2 minutes of perforin permeabilization. This study defines the final sequence of events controlling cytotoxic lymphocyte immune defense, in which perforin pores assemble on the target cell plasma membrane, ensuring efficient delivery of lethal granzymes.


Asunto(s)
Apoptosis/inmunología , Membrana Celular/inmunología , Granzimas/inmunología , Células Asesinas Naturales/inmunología , Proteínas Citotóxicas Formadoras de Poros/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Membrana Celular/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Endocitosis/inmunología , Exocitosis/inmunología , Granzimas/metabolismo , Células HeLa , Humanos , Células Jurkat , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Ratones , Perforina , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/metabolismo , Factores de Tiempo
16.
Oncoimmunology ; 1(2): 219-221, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22720248

RESUMEN

The cytotoxic properties of granzymes are well established, though recent publications suggest additional roles for granzymes in immunity. We demonstrated that granzymes can act as regulators of cross-presentation by dendritic cells by inducing critical "eat-me" signals on the dying tumor cell, resulting in efficient phagocytosis of cell-associated tumor antigen.

17.
J Immunol ; 188(8): 3886-92, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22427643

RESUMEN

Recently, it has been reported that human B cells express and secrete the cytotoxic protease granzyme B (GrB) after stimulation with IL-21 and BCR cross-linking. To date, there are few clues on the function of GrB in B cell biology. As experimental transgenic murine systems should provide insights into these issues, we assayed for GrB in C57BL/6 B cells using an extensive array of physiologically relevant stimuli but were unable to detect either GrB expression or its proteolytic activity, even when Ag-specific transgenic BCRs were engaged. Similar results were also obtained with B cells from DBA/2, CBA, or BALB/c mice. In vivo, infection with either influenza virus or murine γ-herpesvirus induced the expected expression of GrB in CTLs, but not in B cell populations. We also investigated a possible role of GrB on the humoral immune response to the model Ag 4-hydroxy-3-nitrophenylacetyl-keyhole limpet hemocyanin, but GrB-deficient mice produced normal amounts of Ab with typical affinity maturation and a heightened secondary response, demonstrating conclusively the redundancy of GrB for Ab responses. Our results highlight the complex evolutionary differences that have shaped the immune systems of mice and humans. The physiological consequences of GrB expression in human B cells remain unclear, and the current study suggests that experimental mouse models will not be helpful in addressing this issue.


Asunto(s)
Linfocitos B/inmunología , Granzimas/metabolismo , Infecciones por Herpesviridae/inmunología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/inmunología , Linfocitos B/metabolismo , Linfocitos B/virología , Células Cultivadas , Gammaherpesvirinae , Granzimas/inmunología , Haptenos , Hemocianinas/farmacología , Infecciones por Herpesviridae/enzimología , Humanos , Inmunidad Humoral , Interleucinas/farmacología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Orthomyxoviridae , Infecciones por Orthomyxoviridae/enzimología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Especificidad de la Especie , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/virología
18.
J Immunol ; 187(3): 1166-75, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21709155

RESUMEN

Granzymes A and B (GrAB) are known principally for their role in mediating perforin-dependent death of virus-infected or malignant cells targeted by CTL. In this study, we show that granzymes also play a critical role as inducers of Ag cross-presentation by dendritic cells (DC). This was demonstrated by the markedly reduced priming of naive CD8(+) T cells specific for the model Ag OVA both in vitro and in vivo in response to tumor cells killed in the absence of granzymes. Reduced cross-priming was due to impairment of phagocytosis of tumor cell corpses by CD8α(+) DC but not CD8α(-) DC, demonstrating the importance of granzymes in inducing the exposure of prophagocytic "eat-me" signals on the dying target cell. Our data reveal a critical and previously unsuspected role for granzymes A and B in dictating immunogenicity by influencing the mode of tumor cell death and indicate that granzymes contribute to the efficient generation of immune effector pathways in addition to their well-known role in apoptosis induction.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Reactividad Cruzada/inmunología , Granzimas/fisiología , Fagocitosis/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Animales , Antígenos de Neoplasias/inmunología , Muerte Celular/inmunología , Línea Celular Tumoral , Pollos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Granzimas/deficiencia , Granzimas/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Ovalbúmina/toxicidad , Fragmentos de Péptidos/toxicidad , Linfocitos T Citotóxicos/enzimología
19.
Immunol Cell Biol ; 89(4): 540-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20975734

RESUMEN

Destruction of target cells by cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells requires the coordinated action of the pore forming protein perforin (Pfp) and the granzyme (Gzm) family of serine proteases. The activation of a number of serine proteases, including GzmA and B, is predominately mediated by cathepsin C (CatC). Deficiencies in CatC-null mice were therefore expected to replicate the defects observed in GzmAB-deficient mice. We have previously determined that GzmAB-deficient mice exhibit increased susceptibility to murine cytomegalovirus (MCMV) infection. Here, we have compared the ability of CatC(-/-) mice to control MCMV infection with that of GzmAB-deficient animals. We found that CatC(-/-) mice have organ-specific defects in the ability to control MCMV replication, a phenotype that is distinct to that observed in GzmAB(-/-) mice. Significantly, the cytolytic function of CatC-deficient NK cells and CTLs elicited during infection was indistinguishable from that of wild-type cells. Hence, CatC is involved in limiting MCMV replication; however, this effect is independent of its role in promoting effector cytolytic activity. These data provide evidence for a novel and unexpected role of CatC during viral infection.


Asunto(s)
Catepsina C/metabolismo , Infecciones por Citomegalovirus/inmunología , Citotoxicidad Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Antígenos/inmunología , Catepsina C/genética , Línea Celular , Citotoxicidad Inmunológica/genética , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Muromegalovirus/fisiología , Neutrófilos/inmunología , Replicación Viral/genética , Replicación Viral/inmunología
20.
Biol Chem ; 391(8): 873-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20731542

RESUMEN

Proteases of the serine and cysteine protease families are involved in many processes crucial to the lytic functions of cytotoxic T lymphocytes and natural killer cells. In this study we describe those functions and attempt to place them in the pathophysiological context of defence to pathogen invasion. In particular, we stress that the co-evolution of pathogens with the immune systems of higher organisms over evolutionary time has ensured that redundancy, flexibility and polymorphism of the proteases can be identified, both within the protease repertoire of a given species, and by comparing orthologous protease functions across species.


Asunto(s)
Proteasas de Cisteína/fisiología , Sistema Inmunológico/enzimología , Células Asesinas Naturales/enzimología , Células Asesinas Naturales/fisiología , Células T Asesinas Naturales/enzimología , Células T Asesinas Naturales/fisiología , Serina Proteasas/fisiología , Animales , Proteasas de Cisteína/genética , Evolución Molecular , Humanos , Sistema Inmunológico/fisiología , Sistema Inmunológico/fisiopatología , Polimorfismo Genético , Serina Proteasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA