Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Exp Brain Res ; 241(3): 905-915, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36808464

RESUMEN

BACKGROUND: It has been demonstrated that in young and healthy individuals, there is a strong association between the amplitude of EEG-derived motor activity-related cortical potential or EEG spectral power (ESP) and voluntary muscle force. This association suggests that the motor-related ESP may serve as an index of central nervous system function in controlling voluntary muscle activation Therefore, it may potentially be used as an objective marker to track changes in functional neuroplasticity due to neurological disorders, aging, and following rehabilitation therapies. To this end, the relationship between the band-specific ESP-combined spectral power of EEG oscillatory and aperiodic (noise) components-and voluntary elbow flexion (EF) force has been analyzed in elder and young individuals. METHODS: 20 young (22.6 ± 0.87 year) and 28 elderly (74.79 ± 1.37 year) participants performed EF contractions at 20%, 50%, and 80% of maximum voluntary contraction (MVC) while high-density EEG signals were recorded. Both the absolute and relative ESPs were computed for the EEG frequency bands of interest. RESULTS: The MVC force generated by the elderly was foreseeably lower than that of the young participants. Compared to young, the elderly cohort's (1) total ESP was significantly lower for the high (80% MVC) force task; (2) relative ESP in beta band was significantly elevated for the low and moderate (20% MVC and 50% MVC) force tasks; (3) absolute ESP failed to have a positive trend with force for EEG frequency bands of interest; and (4) beta-band relative ESP did not exhibit a significant decrease with increasing force levels. CONCLUSIONS: As opposed to young subjects, the beta-band relative ESP in elderly did not significantly decrease with increasing EF force values. This observation suggests the use of beta-band relative ESP as a potential biomarker for age-related motor control degeneration.


Asunto(s)
Articulación del Codo , Músculo Esquelético , Humanos , Anciano , Electromiografía , Músculo Esquelético/fisiología , Envejecimiento/fisiología , Electroencefalografía , Contracción Isométrica/fisiología
3.
Front Hum Neurosci ; 16: 770053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360287

RESUMEN

Repeatedly performing a submaximal motor task for a prolonged period of time leads to muscle fatigue comprising a central and peripheral component, which demands a gradually increasing effort. However, the brain contribution to the enhancement of effort to cope with progressing fatigue lacks a complete understanding. The intermittent motor tasks (IMTs) closely resemble many activities of daily living (ADL), thus remaining physiologically relevant to study fatigue. The scope of this study is therefore to investigate the EEG-based brain activation patterns in healthy subjects performing IMT until self-perceived exhaustion. Fourteen participants (median age 51.5 years; age range 26-72 years; 6 males) repeated elbow flexion contractions at 40% maximum voluntary contraction by following visual cues displayed on an oscilloscope screen until subjective exhaustion. Each contraction lasted ≈5 s with a 2-s rest between trials. The force, EEG, and surface EMG (from elbow joint muscles) data were simultaneously collected. After preprocessing, we selected a subset of trials at the beginning, middle, and end of the study session representing brain activities germane to mild, moderate, and severe fatigue conditions, respectively, to compare and contrast the changes in the EEG time-frequency (TF) characteristics across the conditions. The outcome of channel- and source-level TF analyses reveals that the theta, alpha, and beta power spectral densities vary in proportion to fatigue levels in cortical motor areas. We observed a statistically significant change in the band-specific spectral power in relation to the graded fatigue from both the steady- and post-contraction EEG data. The findings would enhance our understanding on the etiology and physiology of voluntary motor-action-related fatigue and provide pointers to counteract the perception of muscle weakness and lack of motor endurance associated with ADL. The study outcome would help rationalize why certain patients experience exacerbated fatigue while carrying out mundane tasks, evaluate how clinical conditions such as neurological disorders and cancer treatment alter neural mechanisms underlying fatigue in future studies, and develop therapeutic strategies for restoring the patients' ability to participate in ADL by mitigating the central and muscle fatigue.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6751-6754, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892657

RESUMEN

Conventional therapy improves motor recovery after stroke. However, 50% of stroke survivors still suffer from a significant level of long-term upper extremity impairment. Identifying a specific biomarker whose magnitude scales with the level of force could help in the development of more effective, novel, highly targeted rehabilitation therapies such as brain stimulation or neurofeedback. Four chronic stroke participants were enrolled in this pilot study to find such a neural marker using an Independent Component Analysis (ICA)-based source analysis approach, and investigate how it has been affected by the injury. Beta band desynchronization in the ipsilesional primary motor cortex was found to be most robustly scaling with force. This activity modulation with force was found to be significantly reduced, and to plateau at higher force than that of the contralesional (unaffected) side. A rehabilitation therapy that would target such a neuromarker could have the potential to strengthen the brain-to-muscle drive and improve motor learning and recovery.Clinical Relevance- This study identifies a neural marker that scales with motor output and shows how this modulation has been affected by stroke.


Asunto(s)
Corteza Motora , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Proyectos Piloto , Accidente Cerebrovascular/terapia , Extremidad Superior
5.
Hum Brain Mapp ; 42(14): 4427-4447, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34312933

RESUMEN

Traumatic brain injury (TBI) often results in balance impairment, increasing the risk of falls, and the chances of further injuries. However, the underlying neural mechanisms of postural control after TBI are not well understood. To this end, we conducted a pilot study to explore the neural mechanisms of unpredictable balance perturbations in 17 chronic TBI participants and 15 matched healthy controls (HC) using the EEG, MRI, and diffusion tensor imaging (DTI) data. As quantitative measures of the functional integration and segregation of the brain networks during the postural task, we computed the global graph-theoretic network measures (global efficiency and modularity) of brain functional connectivity derived from source-space EEG in different frequency bands. We observed that the TBI group showed a lower balance performance as measured by the center of pressure displacement during the task, and the Berg Balance Scale (BBS). They also showed reduced brain activation and connectivity during the balance task. Furthermore, the decrease in brain network segregation in alpha-band from baseline to task was smaller in TBI than HC. The DTI findings revealed widespread structural damage. In terms of the neural correlates, we observed a distinct role played by different frequency bands: theta-band modularity during the task was negatively correlated with the BBS in the TBI group; lower beta-band network connectivity was associated with the reduction in white matter structural integrity. Our future studies will focus on how postural training will modulate the functional brain networks in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Ondas Encefálicas/fisiología , Conectoma , Electroencefalografía , Equilibrio Postural/fisiología , Sustancia Blanca/patología , Adulto , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...