Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Vis Exp ; (206)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38738893

RESUMEN

The mechanical property, microhardness, is evaluated in dental enamel, dentin, and bone in oral disease models, including dental fluorosis and periodontitis. Micro-CT (µCT) provides 3D imaging information (volume and mineral density) and scanning electron microscopy (SEM) produces microstructure images (enamel prism and bone lacuna-canalicular). Complementarily to structural analysis by µCT and SEM, microhardness is one of the informative parameters to evaluate how structural changes alter mechanical properties. Despite being a useful parameter, studies on microhardness of alveolar bone in oral diseases are limited. To date, divergent microhardness measurement methods have been reported. Since microhardness values vary depending on the sample preparation (polishing and flat surface) and indentation sites, diverse protocols can cause discrepancies among studies. Standardization of the microhardness protocol is essential for consistent and accurate evaluation in oral disease models. In the present study, we demonstrate a standardized protocol for microhardness analysis in tooth and alveolar bone. Specimens used are as follows: for the dental fluorosis model, incisors were collected from mice treated with/without fluoride-containing water for 6 weeks; for ligature-induced periodontal bone resorption (L-PBR) model, alveolar bones with periodontal bone resorption were collected from mice ligated on the maxillary 2nd molar. At 2 weeks after the ligation, the maxilla was collected. Vickers hardness was analyzed in these specimens according to the standardized protocol. The protocol provides detailed materials and methods for resin embedding, serial polishing, and indentation sites for incisors and alveolar. To the best of our knowledge, this is the first standardized microhardness protocol to evaluate the mechanical properties of tooth and alveolar bone in rodent oral disease models.


Asunto(s)
Proceso Alveolar , Modelos Animales de Enfermedad , Microtomografía por Rayos X , Animales , Ratones , Proceso Alveolar/diagnóstico por imagen , Microtomografía por Rayos X/métodos , Fluorosis Dental/diagnóstico por imagen , Fluorosis Dental/patología , Dureza , Incisivo/diagnóstico por imagen , Diente/diagnóstico por imagen
2.
J Clin Med ; 13(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38610762

RESUMEN

Background: Barrett's esophagus and esophageal adenocarcinoma cases are increasing as gastroesophageal reflux disease increases. Using artificial intelligence (AI) and linked color imaging (LCI), our aim was to establish a method of diagnosis for short-segment Barrett's esophagus (SSBE). Methods: We retrospectively selected 624 consecutive patients in total at our hospital, treated between May 2017 and March 2020, who experienced an esophagogastroduodenoscopy with white light imaging (WLI) and LCI. Images were randomly chosen as data for learning from WLI: 542 (SSBE+/- 348/194) of 696 (SSBE+/- 444/252); and LCI: 643 (SSBE+/- 446/197) of 805 (SSBE+/- 543/262). Using a Vision Transformer (Vit-B/16-384) to diagnose SSBE, we established two AI systems for WLI and LCI. Finally, 126 WLI (SSBE+/- 77/49) and 137 LCI (SSBE+/- 81/56) images were used for verification purposes. The accuracy of six endoscopists in making diagnoses was compared to that of AI. Results: Study participants were 68.2 ± 12.3 years, M/F 330/294, SSBE+/- 409/215. The accuracy/sensitivity/specificity (%) of AI were 84.1/89.6/75.5 for WLI and 90.5/90.1/91.1/for LCI, and those of experts and trainees were 88.6/88.7/88.4, 85.7/87.0/83.7 for WLI and 93.4/92.6/94.6, 84.7/88.1/79.8 for LCI, respectively. Conclusions: Using AI to diagnose SSBE was similar in accuracy to using a specialist. Our finding may aid the diagnosis of SSBE in the clinic.

3.
J Endod ; 50(2): 243-251, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37918795

RESUMEN

INTRODUCTION: A 65-year-old man had nonsurgical retreatment using an iodoform and calcium hydroxide paste in a maxillary left canine with persistent apical periodontitis. An apical mineralized barrier (AMB) was observed 3-months postoperatively. Unfortunately, the tooth was extracted due to a cementum tear. This provided an opportunity to analyze the AMB histologically, as there is a lack of previous reports on its microstructure. METHODS: After extraction and removal of the granulation tissue from the root surface, the canine was processed, and observed using micro-computed tomography (µCT) and light microscopy. Thereafter, the specimen was resin-embedded specimen was evaluated by scanning electron microscopy, micro-X-ray fluorescence spectroscopy and Raman spectroscopy to understand the mechanism and nature of the AMB formation during apical healing. RESULTS: Nonsurgical retreatment was clinically successful based on the absence of clinical symptoms of apical periodontitis and the radiographic presence of an AMB. The AMB was opaque and could be readily differentiated from dentin under a light microscope. Micro-computed tomography analysis revealed that the AMB had the same mineral density as dentin. Scanning electron microscopy revealed that the AMB had two distinct layers based on the size of the calcified particles. Elemental mapping using micro-X-ray fluorescence spectroscopy showed that the localization of calcium and phosphorus differed between AMB and other areas of biomineralization. Raman spectral mapping revealed that the surface layer of the AMB consisted of collagen, calcium carbonate, and hydroxyapatite. CONCLUSIONS: This study explored new analytical methods for elucidating the apical wound-healing process and the nature of the mineralized repair. The findings provided detailed information on the AMB highlighting a bilaminar structure with high calcium components higher on the inside and a brightness similar to cementum not dentin and the presence of hydroxyapatite.


Asunto(s)
Hidróxido de Calcio , Hidrocarburos Yodados , Periodontitis Periapical , Masculino , Humanos , Anciano , Hidróxido de Calcio/uso terapéutico , Hidróxido de Calcio/química , Calcio , Microtomografía por Rayos X , Hidroxiapatitas
4.
Ecotoxicol Environ Saf ; 260: 115089, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37271104

RESUMEN

Perfluorooctanoic acid (PFOA) is an artificial fluorinated organic compound that has generated increased public attention due to its potential health hazards. Unsafe levels of PFOA exposure can affect reproduction, growth and development. During tooth enamel development (amelogenesis), environmental factors including fluoride can cause enamel hypoplasia. However, the effects of PFOA on ameloblasts and tooth enamel formation remain largely unknown. In the present study we demonstrate several PFOA-mediated cell death pathways (necrosis/necroptosis, and apoptosis) and assess the roles of ROS-MAPK/ERK signaling in PFOA-mediated cell death in mouse ameloblast-lineage cells (ALC). ALC cells were treated with PFOA. Cell proliferation and viability were analyzed by MTT assays and colony formation assays, respectively. PFOA suppressed cell proliferation and viability in a dose dependent manner. PFOA induced both necrosis (PI-positive cells) and apoptosis (cleaved-caspase-3, γH2AX and TUNEL-positive cells). PFOA significantly increased ROS production and up-regulated phosphor-(p)-ERK. Addition of ROS inhibitor N-acetyl cysteine (NAC) suppressed p-ERK and decreased necrosis, and increased cell viability compared to PFOA alone, whereas NAC did not change apoptosis. This suggests that PFOA-mediated necrosis was induced by ROS-MAPK/ERK signaling, but apoptosis was not associated with ROS. Addition of MAPK/ERK inhibitor PD98059 suppressed necrosis and increased cell viability compared to PFOA alone. Intriguingly, PD98059 augmented PFOA-mediated apoptosis. This suggests that p-ERK promoted necrosis but suppressed apoptosis. Addition of the necroptosis inhibitor Necrostatin-1 restored cell viability compared to PFOA alone, while pan-caspase inhibitor Z-VAD did not mitigate PFOA-mediated cell death. These results suggest that 1) PFOA-mediated cell death was mainly caused by necrosis/necroptosis by ROS-MAPK/ERK signaling rather than apoptosis, 2) MAPK/ERK signaling plays the dual roles (promoting necrosis and suppressing apoptosis) under PFOA treatment. This is the initial report to indicate that PFOA could be considered as a possible causative factor for cryptogenic enamel malformation. Further studies are required to elucidate the mechanisms of PFOA-mediated adverse effects on amelogenesis.


Asunto(s)
Ameloblastos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Ameloblastos/metabolismo , Muerte Celular , Necrosis
5.
J Appl Oral Sci ; 31: e20230036, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283331

RESUMEN

OBJECTIVES: Fluoride (F) has been widely used to control dental caries, and studies suggest beneficial effects against diabetes when a low dose of F is added to the drinking water (10 mgF/L). This study evaluated metabolic changes in pancreatic islets of NOD mice exposed to low doses of F and the main pathways altered by the treatment. METHODOLOGY: In total, 42 female NOD mice were randomly divided into two groups, considering the concentration of F administered in the drinking water for 14 weeks: 0 or 10 mgF/L. After the experimental period, the pancreas was collected for morphological and immunohistochemical analysis, and the islets for proteomic analysis. RESULTS: In the morphological and immunohistochemical analysis, no significant differences were found in the percentage of cells labelled for insulin, glucagon, and acetylated histone H3, although the treated group had higher percentages than the control group. Moreover, no significant differences were found for the mean percentages of pancreatic areas occupied by islets and for the pancreatic inflammatory infiltrate between the control and treated groups. Proteomic analysis showed large increases in histones H3 and, to a lesser extent, in histone acetyltransferases, concomitant with a decrease in enzymes involved in the formation of acetyl-CoA, besides many changes in proteins involved in several metabolic pathways, especially energy metabolism. The conjunction analysis of these data showed an attempt by the organism to maintain protein synthesis in the islets, even with the dramatic changes in energy metabolism. CONCLUSION: Our data suggests epigenetic alterations in the islets of NOD mice exposed to F levels comparable to those found in public supply water consumed by humans.


Asunto(s)
Caries Dental , Diabetes Mellitus Tipo 1 , Agua Potable , Ratones , Humanos , Animales , Femenino , Ratones Endogámicos NOD , Fluoruros/farmacología , Proteómica
6.
Intern Med ; 62(10): 1479-1485, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36198596

RESUMEN

We herein report a rare case of Yersinia enterocolitica enteritis with a fever and abdominal pain followed by erythema nodosum (EN) a few days later. The diagnosis was confirmed based on characteristic colonoscopy and computed tomography findings, pathology, and mucosal culture. Yersinia enteritis is a curable disease provided a proper diagnosis and treatment are performed. Although EN is a rare clinical course, it should still be considered as a differential diagnosis.


Asunto(s)
Enteritis , Eritema Nudoso , Yersiniosis , Yersinia enterocolitica , Humanos , Yersiniosis/complicaciones , Yersiniosis/diagnóstico , Eritema Nudoso/complicaciones , Eritema Nudoso/diagnóstico , Enteritis/complicaciones , Enteritis/diagnóstico , Diagnóstico Diferencial
7.
J. appl. oral sci ; 31: e20230036, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1440408

RESUMEN

Abstract Fluoride (F) has been widely used to control dental caries, and studies suggest beneficial effects against diabetes when a low dose of F is added to the drinking water (10 mgF/L). Objectives This study evaluated metabolic changes in pancreatic islets of NOD mice exposed to low doses of F and the main pathways altered by the treatment. Methodology In total, 42 female NOD mice were randomly divided into two groups, considering the concentration of F administered in the drinking water for 14 weeks: 0 or 10 mgF/L. After the experimental period, the pancreas was collected for morphological and immunohistochemical analysis, and the islets for proteomic analysis. Results In the morphological and immunohistochemical analysis, no significant differences were found in the percentage of cells labelled for insulin, glucagon, and acetylated histone H3, although the treated group had higher percentages than the control group. Moreover, no significant differences were found for the mean percentages of pancreatic areas occupied by islets and for the pancreatic inflammatory infiltrate between the control and treated groups. Proteomic analysis showed large increases in histones H3 and, to a lesser extent, in histone acetyltransferases, concomitant with a decrease in enzymes involved in the formation of acetyl-CoA, besides many changes in proteins involved in several metabolic pathways, especially energy metabolism. The conjunction analysis of these data showed an attempt by the organism to maintain protein synthesis in the islets, even with the dramatic changes in energy metabolism. Conclusion Our data suggests epigenetic alterations in the islets of NOD mice exposed to F levels comparable to those found in public supply water consumed by humans.

8.
Plant Biotechnol (Tokyo) ; 39(2): 191-194, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35937522

RESUMEN

Allene oxide synthase (AOS) is a key enzyme involved in the biosynthesis of 12-oxo-phytodienoic acid (OPDA) and jasmonic acid and plays an important role in plant defense against herbivore attacks. In the liverwort, Marchantia polymorpha, we previously identified cytosol-type MpAOS1 and chloroplast-type MpAOS2 that show AOS activities. However, there is no direct evidence to show the subcellular localization of MpAOSs and their contribution to plant defense via OPDA production in M. polymorpha. In this study, we generated M. polymorpha mutants, with the MpAOS1 and MpAOS2 genes disrupted via CRISPR/Cas9-mediated genome editing; the loss of OPDA production was analyzed in double-knockout mutants. On AOS mutants, the survival rate and oviposition of spider mites (Tetranychus urticae) increased relative to those on wild-type plants. Overall, these findings suggest that defense systems via OPDA-signaling pathways in response to spider mites have been established in M. polymorpha.

9.
Environ Pollut ; 273: 116495, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33486250

RESUMEN

The trace element fluoride can be beneficial for oral health by preventing dental caries. However, fluoride is also known as an environmental pollutant. Fluoride pollution can lead to fluoride over-ingestion and can cause health issues, including dental fluorosis. Curcumin attenuated fluoride-induced toxicity in animal models, however the molecular mechanisms of how curcumin affects fluoride toxicity remain to be elucidated. We hypothesized that curcumin attenuates fluoride toxicity through modulation of Ac-p53. Here we investigated how curcumin affects the p53-p21 pathway in fluoride toxicity. LS8 cells were treated with NaF with/without curcumin. Curcumin significantly increased phosphorylation of Akt [Thr308] and attenuated fluoride-mediated caspase-3 cleavage and DNA damage marker γH2AX expression. Curcumin-mediated attenuation of caspase-3 activation was reversed by Akt inhibitor LY294002 (LY). However, LY did not alter curcumin-mediated γH2AX suppression. These results suggest that curcumin inhibited fluoride-mediated apoptosis via Akt activation, but DNA damage was suppressed by other pathways. Curcumin did not suppress/alter fluoride-mediated Ac-p53. However, curcumin itself significantly increased Ac-p53 and upregulated p21 protein levels to suppress cell proliferation in a dose-dependent manner. Curcumin suppressed fluoride-induced phosphorylation of p21 and increased p21 levels within the nuclear fraction. However, curcumin did not reverse fluoride-mediated cell growth inhibition. These results suggest that curcumin-induced Ac-p53 and p21 led to cell cycle arrest, while curcumin attenuated fluoride-mediated apoptosis via activation of Akt and suppressed fluoride-mediated DNA damage. By inhibiting DNA damage and apoptosis, curcumin may potentially alleviate health issues caused by fluoride pollution. Further studies are required to better understand the mechanism of curcumin-induced biological effects on fluoride toxicity.

10.
BMC Gastroenterol ; 20(1): 356, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109095

RESUMEN

BACKGROUND: With more prevalent gastroesophageal reflux disease comes increased cases of Barrett's esophagus and esophageal adenocarcinoma. Image-enhanced endoscopy using linked-color imaging (LCI) differentiates between mucosal colors. We compared LCI, white light imaging (WLI), and blue LASER imaging (BLI) in diagnosing reflux esophagitis (RE). METHODS: Consecutive RE patients (modified Los Angeles [LA] classification system) who underwent esophagogastroduodenoscopy using WLI, LCI, and BLI between April 2017 and March 2019 were selected retrospectively. Ten endoscopists compared WLI with LCI or BLI using 142 images from 142 patients. Visibility changes were scored by endoscopists as follows: 5, improved; 4, somewhat improved; 3, equivalent; 2, somewhat decreased; and 1, decreased. For total scores, 40 points was considered improved visibility, 21-39 points was comparable to white light, and < 20 points equaled decreased visibility. Inter- and intra-rater reliabilities (Intra-class Correlation Coefficient [ICC]) were also evaluated. Images showing color differences (ΔE*) and L* a* b* color values in RE and adjacent esophageal mucosae were assessed using CIELAB, a color space system. RESULTS: The mean age of patients was 67.1 years (range: 27-89; 63 males, 79 females). RE LA grades observed included 52 M, 52 A, 24 B, 11 C, and 3 D. Compared with WLI, all RE cases showed improved visibility: 28.2% (40/142), LA grade M: 19.2% (10/52), LA grade A: 34.6% (18/52), LA grade B: 37.5% (9/24), LA grade C: 27.3% (3/11), and LA grade D: 0% (0/3) in LCI, and for all RE cases: 0% in BLI. LCI was not associated with decreased visibility. The LCI inter-rater reliability was "moderate" for LA grade M and "substantial" for erosive RE. The LCI intra-rater reliability was "moderate-substantial" for trainees and experts. Color differences were WLI: 12.3, LCI: 22.7 in LA grade M; and WLI: 18.2, LCI: 31.9 in erosive RE (P < 0.001 for WLI vs. LCI). CONCLUSION: LCI versus WLI and BLI led to improved visibility for RE after subjective and objective evaluations. Visibility and the ICC for minimal change esophagitis were lower than for erosive RE for LCI. With LCI, RE images contrasting better with the surrounding esophageal mucosa were more clearly viewed.


Asunto(s)
Esófago de Barrett , Esofagitis Péptica , Adulto , Anciano , Anciano de 80 o más Años , Esofagitis Péptica/diagnóstico por imagen , Femenino , Humanos , Aumento de la Imagen , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos
11.
Heliyon ; 6(6): e04211, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32577575

RESUMEN

OBJECTIVES: The effects of 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymer on the adherence of microorganisms such as non-Candida albicans Candida (NCAC) and methicillin-resistant Staphylococcus aureus (MRSA), frequently detected in oral infections in immunocompromised and/or elderly people, to denture resin material, are still unclear. Here, we report the effects of MPC-polymer on the adherence of C. albicans, NCAC, and MRSA to acrylic denture resin. METHODS: Sixteen strains of C. albicans, seven strains of C. glabrata, two strains of C. tropicalis, one strain of C. parapsilosis, and six strains of MRSA were used. We cultured the fungal/bacterial strains and examined the cell growth and adherence of fungi/bacteria to mucin-coated acrylic denture resin plates (ADRP) with or without MPC-polymer coating, by scanning electron microscopy. The cell surface hydrophobicity of the fungal/bacterial strains was measured by the adsorption to hydrocarbons. RESULTS: MPC-polymer did not affect the growth of all strains of Candida species and MRSA, but significantly suppressed adherence to ADRP in most strains of C. albicans and all strains of NCAC and MRSA. A significant positive correlation was found between cell hydrophobicity and the reduction rates of microbial adherence to ADRP treated with 5% of MPC-polymer. CONCLUSIONS: MPC-polymer treatment for acrylic resin material suppresses the adherence of C. albicans, NCAC and MRSA via their hydrophilicity interaction. CLINICAL SIGNIFICANCE: The application of MPC-polymer for denture hygiene is potent to prevent oral candidiasis, denture stomatitis and opportunistic infection, caused by Candida species and MRSA, via suppressing the adherence of those fungus/bacteria.

12.
J Food Biochem ; 44(8): e13326, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32572985

RESUMEN

Subtilisin NAT (STN), alternatively designated nattokinase, is a serine protease with potent fibrinolytic activity. In this study, we screened several foods to enhance the fibrinolytic potential of STN and identified unsaturated fatty acid-rich ones as candidates. We isolated linoleic acid as a major active compound from one of the most active foods, red pepper. Linoleic acid promoted the STN-mediated fibrin/fibrinogen degradation at >20 µg/ml. STN cleaved three of the fibrinogen polypeptide chains, among which linoleic acid accelerated Bß-chain and γ-chain degradations, but slightly suppressed the degradation of α-chain fragments. Linoleic acid failed to affect small synthetic peptide degradation, suggesting a conformational modulation of fibrin/fibrinogen for the linoleic acid promotion of STN activity. Of the various fatty acids tested, unsaturated ones were active but saturated ones were rather inhibitory to STN-mediated fibrinolysis. Thus, our data shed new light on the dietary promotion of STN activity. PRACTICAL APPLICATIONS: Subtilisin NAT (STN) is a serine protease abundantly contained in natto, a soybean food fermented with Bacillus subtilis var. natto. The use of STN as functional foods to improve blood circulation is getting attention because STN actively degrades fibrin. Our results demonstrate that widely occurring unsaturated fatty acids such as linoleic, eicosapentaenoic, and docosahexaenoic acids enhance the fibrinolytic activity of STN. Thus, the intake of natto or STN supplements in combination with unsaturated fatty acid-containing oil can be a novel way to gain cardiovascular benefits.


Asunto(s)
Bacillus subtilis , Subtilisinas , Ácidos Grasos Insaturados , Fibrinólisis
13.
Chemosphere ; 247: 125825, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31927229

RESUMEN

Previously we demonstrated that fluoride increased acetylated-p53 (Ac-p53) in LS8 cells that are derived from mouse enamel organ epithelia and in rodent ameloblasts. However, how p53 is acetylated by fluoride and how the p53 upstream molecular pathway responds to fluoride is not well characterized. Here we demonstrate that fluoride activates histone acetyltransferases (HATs) including CBP, p300, PCAF and Tip60 to acetylate p53. HAT activity is regulated by post-translational modifications such as acetylation and phosphorylation. HAT proteins and their post-translational modifications (p300, Acetyl-p300, CBP, Acetyl-CBP, Tip60 and phospho-Tip60) were analyzed by Western blots. p53-HAT binding was detected by co-immunoprecipitation (co-IP). Cell growth inhibition was analyzed by MTT assays. LS8 cells were treated with NaF with/without HAT inhibitors MG149 (Tip60 inhibitor) and Anacardic Acid (AA; inhibits p300/CBP and PCAF). MG149 or AA was added 1 h prior to NaF treatment. Co-IP results showed that NaF increased p53-CBP binding and p53-PCAF binding. NaF increased active Acetyl-p300, Acetyl-CBP and phospho-Tip60 levels, suggesting that fluoride activates these HATs. Fluoride-induced phospho-Tip60 was decreased by MG149. MG149 or AA treatment reversed fluoride-induced cell growth inhibition at 24 h. MG149 or AA treatment decreased fluoride-induced p53 acetylation to inhibit caspase-3 cleavage, DNA damage marker γH2AX expression and cytochrome-c release into the cytosol. These results suggest that acetylation of p53 by HATs contributes, at least in part, to fluoride-induced toxicity in LS8 cells via cell growth inhibition, apoptosis, DNA damage and mitochondrial damage. Modulation of HAT activity may, therefore, be a potential therapeutic target to mitigate fluoride toxicity in ameloblasts.


Asunto(s)
Fluoruros/toxicidad , Histona Acetiltransferasas/farmacología , Acetilación , Animales , Caspasa 3/metabolismo , Línea Celular , Proliferación Celular , Daño del ADN/efectos de los fármacos , Proteína p300 Asociada a E1A/metabolismo , Humanos , Lisina Acetiltransferasa 5/metabolismo , Ratones , Unión Proteica , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
14.
Digestion ; 101(5): 598-607, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31302654

RESUMEN

BACKGROUND/AIMS: To compare white light imaging (WLI) with linked color imaging (LCI) and blue LASER imaging (BLI) in endoscopic findings of Helicobacter pylori presently infected, previously infected, and uninfected gastric mucosae for visibility and inter-rater reliability. METHODS: WLI, LCI and BLI bright mode (BLI-bright) were used to obtain 1,092 endoscopic images from 261 patients according to the Kyoto Classification of Gastritis. Images were evaluated retrospectively by 10 experts and 10 trainee endoscopists and included diffuse redness, spotty redness, map-like redness, patchy redness, red streaks, intestinal metaplasia, and an atrophic border (52 cases for each finding, respectively). Physicians assessed visibility as follows: 5 (improved), 4 (somewhat improved), 3 (equivalent), 2 (somewhat decreased), and 1 (decreased). Visibility was assessed from totaled scores. The inter-rater reliability (intraclass correlation coefficient) was also evaluated. RESULTS: Compared with WLI, all endoscopists reported improved visibility with LCI: 55.8% for diffuse redness; LCI: 38.5% for spotty redness; LCI: 57.7% for map-like redness; LCI: 40.4% for patchy redness; LCI: 53.8% for red streaks; LCI: 42.3% and BLI-bright: 80.8% for intestinal metaplasia; LCI: 46.2% for an atrophic border. For all endoscopists, the inter-rater reliabilities of LCI compared to WLI were 0.73-0.87. CONCLUSION: The visibility of each endoscopic finding was improved by LCI while that of intestinal metaplasia was improved by BLI-bright.


Asunto(s)
Mucosa Gástrica/diagnóstico por imagen , Gastritis/diagnóstico , Gastroscopía/métodos , Aumento de la Imagen/métodos , Imagen Óptica/métodos , Adulto , Anciano , Anciano de 80 o más Años , Color , Femenino , Mucosa Gástrica/patología , Gastritis/patología , Gastroscopía/instrumentación , Gastroscopía/estadística & datos numéricos , Humanos , Aumento de la Imagen/instrumentación , Masculino , Metaplasia/diagnóstico , Metaplasia/patología , Persona de Mediana Edad , Variaciones Dependientes del Observador , Imagen Óptica/instrumentación , Imagen Óptica/estadística & datos numéricos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Adulto Joven
15.
Sci Rep ; 9(1): 14086, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575895

RESUMEN

MMP20 cleaves cadherins and may facilitate cell movement, however MMP20 is not known to cleave tight junction or desmosome proteins. Ameloblasts had not previously been screened for membrane anchored proteases that could contribute to cell movement. Here we performed a PCR screen for proteolyticlly active A Disintegrin And Metalloproteinase (ADAM) family members. These proteinases are termed sheddases because they have a transmembrane domain and their catalytic domain on the cell surface can function to release anchored proteins. Significantly, ADAMs can be targeted to specific substrates on the cell membrane through their interaction with tetraspanins. Six ADAMs (ADAM8, 9, 10, 15, 17, 19) were expressed in mouse enamel organs. We show that Adam10 expression begins in the apical loop, continues through the secretory stage and abruptly ends at the transition stage when ameloblast migration ceases. ADAM10 cleaves cadherins and tight junction plus desmosome proteins and is well characterized for its role in cell movement. ADAM10 facilitated LS8 cell migration/invasion through a Matrigel coated membrane and we demonstrate that ADAM10, but not ADAM17 cleaves the RELT extracellular domain. This striking result is significant because RELT mutations cause amelogenesis imperfecta (AI) and this directly links ADAM10 to an important role in enamel development.


Asunto(s)
Proteína ADAM10/metabolismo , Ameloblastos/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Esmalte Dental/crecimiento & desarrollo , Proteínas de la Membrana/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Proteína ADAM10/fisiología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Animales , Western Blotting , Movimiento Celular , Esmalte Dental/metabolismo , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Proteínas de la Membrana/fisiología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Cells ; 8(5)2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31083332

RESUMEN

Fluoride overexposure is an environmental health hazard and can cause enamel and skeletal fluorosis. Previously we demonstrated that fluoride increased acetylated-p53 and its downstream target p21 in ameloblast-derived LS8 cells. However, p21 function in fluoride toxicity is not well characterized. This study seeks to gain a better understanding of how p53 down-stream mediators, p21 and MDM2, respond to fluoride toxicity. LS8 cells were treated with NaF with/without MG-132 (proteasome inhibitor) or Nutlin-3a (MDM2 antagonist). NaF treatment for 2-6 h increased phospho-p21, which can inhibit apoptosis. However, phospho-p21 and p21 were decreased by NaF at 24 h, even though p21 mRNA was significantly increased at this time point. MG-132 reversed the fluoride-mediated p21 decrease, indicating that fluoride facilitates p21 proteasomal degradation. MG-132 suppressed fluoride-induced caspase-3 cleavage, suggesting that the proteasome plays a pro-apoptotic role in fluoride toxicity. NaF increased phospho-MDM2 in vitro and in mouse ameloblasts in vivo. Nutlin-3a suppressed NaF-mediated MDM2-p21 binding to reverse p21 degradation which increased phospho-p21. This suppressed apoptosis after 24 h NaF treatment. These results suggest that MDM2-mediated p21 proteasomal degradation with subsequent phospho-p21 attenuation contributes to fluoride-induced apoptosis. Inhibition of MDM2-mediated p21 degradation may be a potential therapeutic target to mitigate fluoride toxicity.


Asunto(s)
Ameloblastos/efectos de los fármacos , Ameloblastos/metabolismo , Apoptosis/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Proteínas Proto-Oncogénicas c-mdm2 , Fluoruro de Sodio/toxicidad , Ameloblastos/citología , Animales , Línea Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Esmalte Dental/citología , Esmalte Dental/efectos de los fármacos , Esmalte Dental/metabolismo , Imidazoles/farmacología , Leupeptinas/farmacología , Ratones , Ratones Endogámicos C57BL , Piperazinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo
17.
Alcohol Clin Exp Res ; 43(4): 617-627, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30748014

RESUMEN

BACKGROUND: Co-occurrence of metabolic syndrome and chronic alcohol consumption is increasing worldwide. The present study investigated the effect of the chemical chaperone 4-phenylbutyric acid (PBA)-which has been shown to alleviate dietary steatohepatitis caused by endoplasmic reticulum (ER) stress-on chronic-plus-binge ethanol (EtOH)-induced liver injury in a mouse model of obesity. METHODS: Male KK-Ay mice (8 weeks old) were fed a Lieber-DeCarli diet (5% EtOH) for 10 days. Some mice were given PBA intraperitoneally (120 mg/kg body weight, daily) during the experimental period. On day 11, mice were gavaged with a single dose of EtOH (4 g/kg body weight). Control mice were given a dextrin gavage after being pair-fed a control diet. All mice were then serially euthanized before or at 9 hours after gavage. RESULTS: Chronic-plus-binge EtOH intake induced massive hepatic steatosis along with hepatocyte apoptosis and inflammation, which was reversed by PBA treatment. Administration of PBA also suppressed chronic-plus-binge EtOH-induced up-regulation of ER stress-related genes including binding immunoglobulin protein (Bip), unspliced and spliced forms of X-box-binding protein-1 (uXBP1 and sXBP1, respectively), inositol trisphosphate receptor (IP3R), and C/EBP homologous protein (CHOP). Further, it blocked chronic-plus-binge EtOH-induced expression of the oxidative stress marker heme oxygenase-1 (HO-1) and 4-hydroxynonenal. Chronic EtOH alone (without binge) increased Bip and uXBP1, but it did not affect those of sXBP1, IP3R, CHOP, or HO-1. PBA reversed the prebinge expression of these genes to control levels, but it did not affect chronic EtOH-induced hepatic activity of cytochrome P450 2E1. CONCLUSIONS: Binge EtOH intake after chronic consumption induces massive ER stress-related oxidative stress and liver injury in a mouse model of obesity through dysregulation of the unfolded protein response. PBA ameliorated chronic-plus-binge EtOH-induced liver injury by reducing ER and oxidative stress after an EtOH binge.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Etanol/efectos adversos , Fenilbutiratos/farmacología , Animales , Apoptosis/efectos de los fármacos , Consumo Excesivo de Bebidas Alcohólicas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocromo P-450 CYP2E1/metabolismo , Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Obesos , Estrés Oxidativo/genética , Regulación hacia Arriba/efectos de los fármacos
18.
Case Rep Anesthesiol ; 2018: 6248467, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29977620

RESUMEN

Insulinoma is a rare neuroendocrine tumor that causes hypoglycemia due to unregulated insulin secretion. Blood glucose management during insulinoma resection is therefore challenging. We present a case in which real-time subcutaneous continuous glucose monitoring (SCGM) in combination with intermittent blood glucose measurement was used for glycemic control during surgery for insulinoma resection. The SCGM system showed the trends and peak of interstitial glucose in response to glucose loading and the change of interstitial glucose before and after insulinoma resection. These data were helpful for adjusting the glucose infusion; therefore, we think that an SCGM system as a supportive device for glucose monitoring may be useful for glucose management during surgery.

19.
Digestion ; 97(2): 183-194, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29320766

RESUMEN

BACKGROUND/AIMS: To evaluate the usefulness of linked color imaging (LCI) and blue LASER imaging (BLI) in Barrett's esophagus (BE) compared with white light imaging (WLI). METHODS: Five expert and trainee endoscopists compared WLI, LCI, and BLI images obtained from 63 patients with short-segment BE. Physicians assessed visibility as follows: 5 (improved), 4 (somewhat improved), 3 (equivalent), 2 (somewhat decreased), and one (decreased). Scores were evaluated to assess visibility. The inter- and intra-rater reliability (intra-class correlation coefficient) of image assessments were also evaluated. Images were objectively evaluated based on L* a* b* color values and color differences (ΔE*) in a CIELAB color space system. RESULTS: Improved visibility compared with WLI was achieved for LCI: 44.4%, BLI: 0% for all endoscopists; LCI: 55.6%, BLI: 1.6% for trainees; and LCI: 47.6%, BLI: 0% for experts. The visibility score of trainees compared with experts was significantly higher for LCI (p = 0.02). Intra- and inter-rater reliability ratings for LCI compared with WLI were "moderate" for trainees, and "moderate-substantial" for experts. The ΔE* revealed statistically significant differences between WLI and LCI. CONCLUSION: LCI improved the visibility of short-segment BE compared with WLI, especially for trainees, when evaluated both subjectively and objectively.


Asunto(s)
Esófago de Barrett/diagnóstico por imagen , Esofagoscopía/métodos , Esófago/diagnóstico por imagen , Imagen de Banda Estrecha/métodos , Adulto , Anciano , Anciano de 80 o más Años , Color , Esófago/patología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Estudios Retrospectivos , Adulto Joven
20.
Arch Toxicol ; 92(3): 1283-1293, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29185024

RESUMEN

Low-dose fluoride is an effective caries prophylactic, but high-dose fluoride is an environmental health hazard that causes skeletal and dental fluorosis. Treatments to prevent fluorosis and the molecular pathways responsive to fluoride exposure remain to be elucidated. Previously we showed that fluoride activates SIRT1 as an adaptive response to protect cells. Here, we demonstrate that fluoride induced p53 acetylation (Ac-p53) [Lys379], which is a SIRT1 deacetylation target, in ameloblast-derived LS8 cells in vitro and in enamel organ in vivo. Here we assessed SIRT1 function on fluoride-induced Ac-p53 formation using CRISPR/Cas9-mediated Sirt1 knockout (LS8Sirt/KO) cells or CRISPR/dCas9/SAM-mediated Sirt1 overexpressing (LS8Sirt1/over) cells. NaF (5 mM) induced Ac-p53 formation and increased cell cycle arrest via Cdkn1a/p21 expression in Wild-type (WT) cells. However, fluoride-induced Ac-p53 was suppressed by the SIRT1 activator resveratrol (50 µM). Without fluoride, Ac-p53 persisted in LS8Sirt/KO cells, whereas it decreased in LS8Sirt1/over. Fluoride-induced Ac-p53 formation was also suppressed in LS8Sirt1/over cells. Compared to WT cells, fluoride-induced Cdkn1a/p21 expression was elevated in LS8Sirt/KO and these cells were more susceptible to fluoride-induced growth inhibition. In contrast, LS8Sirt1/over cells were significantly more resistant. In addition, fluoride-induced cytochrome-c release and caspase-3 activation were suppressed in LS8Sirt1/over cells. Fluoride induced expression of the DNA double strand break marker γH2AX in WT cells and this was augmented in LS8Sirt1/KO cells, but was attenuated in LS8Sirt1/over cells. Our results suggest that SIRT1 deacetylates Ac-p53 to mitigate fluoride-induced cell growth inhibition, mitochondrial damage, DNA damage and apoptosis. This is the first report implicating Ac-p53 in fluoride toxicity.


Asunto(s)
Esmalte Dental/efectos de los fármacos , Fluoruros/toxicidad , Sirtuina 1/genética , Proteína p53 Supresora de Tumor/metabolismo , Acetilación/efectos de los fármacos , Animales , Sistemas CRISPR-Cas , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Esmalte Dental/citología , Edición Génica , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Ratas Sprague-Dawley , Sirtuina 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...