Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 10(1): 231, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744857

RESUMEN

Phosphorylated H2AX, known as γH2AX, forms in response to genotoxic insults in somatic cells. Despite the high abundance of H2AX in zygotes, the level of irradiation-induced γH2AX is low at this stage. Another H2A variant, TH2A, is present at a high level in zygotes and can also be phosphorylated at its carboxyl end. We constructed H2AX- or TH2A-deleted mice using CRISPR Cas9 and investigated the role of these H2A variants in the DNA damage response (DDR) of zygotes exposed to γ-ray irradiation at the G2 phase. Our results showed that compared to irradiated wild-type zygotes, irradiation significantly reduced the developmental rates to the blastocyst stage in H2AX-deleted zygotes but not in TH2A-deleted ones. Furthermore, live cell imaging revealed that the G2 checkpoint was activated in H2AX-deleted zygotes, but the duration of arrest was significantly shorter than in wild-type and TH2A-deleted zygotes. The number of micronuclei was significantly higher in H2AX-deleted embryos after the first cleavage, possibly due to the shortened cell cycle arrest of damaged embryos and, consequently, the insufficient time for DNA repair. Notably, FRAP analysis suggested the involvement of H2AX in chromatin relaxation. Moreover, phosphorylated CHK2 foci were found in irradiated wild-type zygotes but not in H2AX-deleted ones, suggesting a critical role of these foci in maintaining cell cycle arrest for DNA repair. In conclusion, H2AX, but not TH2A, is involved in the DDR of zygotes, likely by creating a relaxed chromatin structure with enhanced accessibility for DNA repair proteins and by facilitating the formation of pCHK2 foci to prevent premature cleavage.

2.
Nucleic Acids Res ; 52(11): 6158-6170, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38567720

RESUMEN

In mice, transcription from the zygotic genome is initiated at the mid-one-cell stage, and occurs promiscuously in many areas of the genome, including intergenic regions. Regulated transcription from selected genes is established during the two-cell stage. This dramatic change in the gene expression pattern marks the initiation of the gene expression program and is essential for early development. We investigated the involvement of the histone variants H3.1/3.2 in the regulation of changes in gene expression pattern during the two-cell stage. Immunocytochemistry analysis showed low nuclear deposition of H3.1/3.2 in the one-cell stage, followed by a rapid increase in the late two-cell stage. Where chromatin structure is normally closed between the one- and two-cell stages, it remained open until the late two-cell stage when H3.1/3.2 were knocked down by small interfering RNA. Hi-C analysis showed that the formation of the topologically associating domain was disrupted in H3.1/3.2 knockdown (KD) embryos. Promiscuous transcription was also maintained in the late two-cell stage in H3.1/3.2 KD embryos. These results demonstrate that H3.1/3.2 are involved in the initial process of the gene expression program after fertilization, through the formation of a closed chromatin structure to execute regulated gene expression during the two-cell stage.


Asunto(s)
Cromatina , Regulación del Desarrollo de la Expresión Génica , Histonas , Animales , Ratones , Histonas/metabolismo , Cromatina/metabolismo , Transcripción Genética , Cigoto/metabolismo , Técnicas de Silenciamiento del Gen , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...