Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(10): e2318542121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408230

RESUMEN

Pyrenoids are microcompartments that are universally found in the photosynthetic plastids of various eukaryotic algae. They contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and play a pivotal role in facilitating CO2 assimilation via CO2-concentrating mechanisms (CCMs). Recent investigations involving model algae have revealed that pyrenoid-associated proteins participate in pyrenoid biogenesis and CCMs. However, these organisms represent only a small part of algal lineages, which limits our comprehensive understanding of the diversity and evolution of pyrenoid-based CCMs. Here we report a pyrenoid proteome of the chlorarachniophyte alga Amorphochlora amoebiformis, which possesses complex plastids acquired through secondary endosymbiosis with green algae. Proteomic analysis using mass spectrometry resulted in the identification of 154 potential pyrenoid components. Subsequent localization experiments demonstrated the specific targeting of eight proteins to pyrenoids. These included a putative Rubisco-binding linker, carbonic anhydrase, membrane transporter, and uncharacterized GTPase proteins. Notably, most of these proteins were unique to this algal lineage. We suggest a plausible scenario in which pyrenoids in chlorarachniophytes have evolved independently, as their components are not inherited from green algal pyrenoids.


Asunto(s)
Dióxido de Carbono , Chlorophyta , Dióxido de Carbono/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Proteómica , Plastidios/metabolismo , Fotosíntesis/genética , Chlorophyta/genética , Chlorophyta/metabolismo , Plantas/metabolismo
2.
Microbiol Resour Announc ; 13(2): e0081623, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38179908

RESUMEN

Tetratostichococcus sp. P1 shows an acidophilic phenotype which could allow mass-scale monoculture of this green microalga without severe contamination by environmental microorganisms. In this study, we report a chromosome-scale genome assembly for Tetratostichococcus sp. P1.

3.
Commun Biol ; 6(1): 590, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296191

RESUMEN

The coexistence of three sexual phenotypes (male, female and bisexual) in a single species, 'trioecy', is rarely found in diploid organisms such as flowering plants and invertebrates. However, trioecy in haploid organisms has only recently been reported in a green algal species, Pleodorina starrii. Here, we generated whole-genome data of the three sex phenotypes of P. starrii to reveal a reorganization of the ancestral sex-determining regions (SDRs) in the sex chromosomes: the male and bisexual phenotypes had the same "male SDR" with paralogous gene expansions of the male-determining gene MID, whereas the female phenotype had a "female SDR" with transposition of the female-specific gene FUS1 to autosomal regions. Although the male and bisexual sex phenotypes had the identical male SDR and harbored autosomal FUS1, MID and FUS1 expression during sexual reproduction differed between them. Thus, the coexistence of three sex phenotypes in P. starrii is possible.


Asunto(s)
Genoma , Cromosomas Sexuales , Haploidia , Reproducción/genética
4.
Commun Biol ; 6(1): 89, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690657

RESUMEN

Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.


Asunto(s)
Chlorophyta , Genoma , Filogenia , Chlorophyta/genética , Genómica , Agua Dulce
5.
DNA Res ; 29(6)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36197113

RESUMEN

Diatoms function as major primary producers, accumulating large amounts of biomass in most aquatic environments. Given their rapid responses to changes in environmental conditions, diatoms are used for the biological monitoring of water quality and for performing ecotoxicological tests in aquatic ecosystems. However, the molecular basis for their toxicity to chemical compounds remains largely unknown. Here, we sequenced the genome of a freshwater diatom, Mayamaea pseudoterrestris NIES-4280, which has been proposed as an alternative strain of Navicula pelliculosa UTEX 664 for performing the Organisation for Economic Co-operation and Development ecotoxicological test. This study shows that M. pseudoterrestris has a small genome and carries the lowest number of genes among freshwater diatoms. The gene content of M. pseudoterrestris is similar to that of the model marine diatom, Phaeodactylum tricornutum. Genes related to cell motility, polysaccharide metabolism, oxidative stress alleviation, intracellular calcium signalling, and reactive compound detoxification showed rapid changes in their expression patterns in response to copper exposure. Active gliding motility was observed in response to copper addition, and copper exposure decreased intracellular calcium concentration. These findings enhance our understanding of the environmental adaptation of diatoms, and elucidate the molecular basis of toxicity of chemical compounds in algae.


Asunto(s)
Diatomeas , Diatomeas/genética , Cobre/toxicidad , Calcio , Ecosistema
6.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35079797

RESUMEN

In many lineages of algae and land plants, photosynthesis was lost multiple times independently. Comparative analyses of photosynthetic and secondary nonphotosynthetic relatives have revealed the essential functions of plastids, beyond photosynthesis. However, evolutionary triggers and processes that drive the loss of photosynthesis remain unknown. Cryptophytes are microalgae with complex plastids derived from a red alga. They include several secondary nonphotosynthetic species with closely related photosynthetic taxa. In this study, we found that a cryptophyte, Cryptomonas borealis, is in a stage just prior to the loss of photosynthesis. Cryptomonas borealis was mixotrophic, possessed photosynthetic activity, and grew independent of light. The plastid genome of C. borealis had distinct features, including increases of group II introns with mobility, frequent genome rearrangements, incomplete loss of inverted repeats, and abundant small/medium/large-sized structural variants. These features provide insight into the evolutionary process leading to the loss of photosynthesis.


Asunto(s)
Genoma de Plastidios , Criptófitas/genética , Fotosíntesis/genética , Filogenia , Plastidios/genética
8.
Front Plant Sci ; 12: 749895, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925404

RESUMEN

Marine phytoplankton are major primary producers, and their growth is primarily limited by nitrogen in the oligotrophic ocean environment. The haptophyte Braarudosphaera bigelowii possesses a cyanobacterial endosymbiont (UCYN-A), which plays a major role in nitrogen fixation in the ocean. However, host-symbiont interactions are poorly understood because B. bigelowii was unculturable. In this study, we sequenced the complete genome of the B. bigelowii endosymbiont and showed that it was highly reductive and closely related to UCYN-A2 (an ecotype of UCYN-A). We succeeded in establishing B. bigelowii strains and performed microscopic observations. The detailed observations showed that the cyanobacterial endosymbiont was surrounded by a single host derived membrane and divided synchronously with the host cell division. The transcriptome of B. bigelowii revealed that B. bigelowii lacked the expression of many essential genes associated with the uptake of most nitrogen compounds, except ammonia. During cultivation, some of the strains completely lost the endosymbiont. Moreover, we did not find any evidence of endosymbiotic gene transfer from the endosymbiont to the host. These findings illustrate an unstable morphological, metabolic, and genetic relationship between B. bigelowii and its endosymbiont.

9.
Sci Rep ; 11(1): 22231, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811380

RESUMEN

Germ-soma differentiation evolved independently in many eukaryotic lineages and contributed to complex multicellular organizations. However, the molecular genetic bases of such convergent evolution remain unresolved. Two multicellular volvocine green algae, Volvox and Astrephomene, exhibit convergent evolution of germ-soma differentiation. The complete genome sequence is now available for Volvox, while genome information is scarce for Astrephomene. Here, we generated the de novo whole genome sequence of Astrephomene gubernaculifera and conducted RNA-seq analysis of isolated somatic and reproductive cells. In Volvox, tandem duplication and neofunctionalization of the ancestral transcription factor gene (RLS1/rlsD) might have led to the evolution of regA, the master regulator for Volvox germ-soma differentiation. However, our genome data demonstrated that Astrephomene has not undergone tandem duplication of the RLS1/rlsD homolog or acquisition of a regA-like gene. Our RNA-seq analysis revealed the downregulation of photosynthetic and anabolic gene expression in Astrephomene somatic cells, as in Volvox. Among genes with high expression in somatic cells of Astrephomene, we identified three genes encoding putative transcription factors, which may regulate somatic cell differentiation. Thus, the convergent evolution of germ-soma differentiation in the volvocine algae may have occurred by the acquisition of different regulatory circuits that generate a similar division of labor.


Asunto(s)
Evolución Biológica , Diferenciación Celular/genética , Chlorophyceae/genética , Chlorophyta/genética , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Células Germinativas , Volvox/genética , Secuenciación Completa del Genoma
10.
Nat Commun ; 12(1): 3593, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135337

RESUMEN

Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.


Asunto(s)
Chlorophyta/metabolismo , Océanos y Mares , Fotorreceptores de Plantas/metabolismo , Fitoplancton/metabolismo , Adaptación Fisiológica/genética , Núcleo Celular/metabolismo , Chlorophyta/clasificación , Chlorophyta/genética , Criptocromos/genética , Criptocromos/metabolismo , Evolución Molecular , Luz , Metagenoma , Fotorreceptores de Plantas/genética , Filogenia , Fitocromo/genética , Fitocromo/metabolismo , Fitoplancton/clasificación , Fitoplancton/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcripción Genética/efectos de la radiación
11.
BMC Ecol Evol ; 21(1): 11, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33514317

RESUMEN

BACKGROUND: Pyrenoids are protein microcompartments composed mainly of Rubisco that are localized in the chloroplasts of many photosynthetic organisms. Pyrenoids contribute to the CO2-concentrating mechanism. This organelle has been lost many times during algal/plant evolution, including with the origin of land plants. The molecular basis of the evolutionary loss of pyrenoids is a major topic in evolutionary biology. Recently, it was hypothesized that pyrenoid formation is controlled by the hydrophobicity of the two helices on the surface of the Rubisco small subunit (RBCS), but the relationship between hydrophobicity and pyrenoid loss during the evolution of closely related algal/plant lineages has not been examined. Here, we focused on, the Reticulata group of the unicellular green algal genus Chloromonas, within which pyrenoids are present in some species, although they are absent in the closely related species. RESULTS: Based on de novo transcriptome analysis and Sanger sequencing of cloned reverse transcription-polymerase chain reaction products, rbcS sequences were determined from 11 strains of two pyrenoid-lacking and three pyrenoid-containing species of the Reticulata group. We found that the hydrophobicity of the RBCS helices was roughly correlated with the presence or absence of pyrenoids within the Reticulata group and that a decrease in the hydrophobicity of the RBCS helices may have primarily caused pyrenoid loss during the evolution of this group. CONCLUSIONS: Although we suggest that the observed correlation may only exist for the Reticulata group, this is still an interesting study that provides novel insight into a potential mechanism determining initial evolutionary steps of gain and loss of the pyrenoid.


Asunto(s)
Chlorophyta , Ribulosa-Bifosfato Carboxilasa , Carbono , Chlorophyta/genética , Eucariontes , Plastidios , Ribulosa-Bifosfato Carboxilasa/genética
12.
Epigenetics Chromatin ; 13(1): 53, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267854

RESUMEN

BACKGROUND: Environmental impacts on a fetus can disrupt germ cell development leading to epimutations in mature germ cells. Paternal inheritance of adverse health effects through sperm epigenomes, including DNA methylomes, has been recognized in human and animal studies. However, the impacts of gestational exposure to a variety of environmental factors on the germ cell epigenomes are not fully investigated. Arsenic, a naturally occurring contaminant, is one of the most concerning environmental chemicals, that is causing serious health problems, including an increase in cancer, in highly contaminated areas worldwide. We previously showed that gestational arsenic exposure of pregnant C3H mice paternally induces hepatic tumor increase in the second generation (F2). In the present study, we have investigated the F1 sperm DNA methylomes genome-widely by one-base resolution analysis using a reduced representation bisulfite sequencing (RRBS) method. RESULTS: We have clarified that gestational arsenic exposure increases hypomethylated cytosines in all the chromosomes and they are significantly overrepresented in the retrotransposon LINEs and LTRs, predominantly in the intergenic regions. Closer analyses of detailed annotated DNA sequences showed that hypomethylated cytosines are especially accumulated in the promoter regions of the active full-length L1MdA subfamily in LINEs, and 5'LTRs of the active IAPE subfamily in LTRs. This is the first report that has identified the specific positions of methylomes altered in the retrotransposon elements by environmental exposure, by genome-wide methylome analysis. CONCLUSION: Lowered DNA methylation potentially enhances L1MdA retrotransposition and cryptic promoter activity of 5'LTR for coding genes and non-coding RNAs. The present study has illuminated the environmental impacts on sperm DNA methylome establishment that can lead to augmented retrotransposon activities in germ cells and can cause harmful effects in the following generation.


Asunto(s)
Intoxicación por Arsénico/genética , Metilación de ADN , Elementos de Nucleótido Esparcido Largo , Efectos Tardíos de la Exposición Prenatal/genética , Espermatozoides/metabolismo , Animales , Arsénico/toxicidad , Femenino , Masculino , Ratones , Embarazo , Espermatozoides/efectos de los fármacos , Secuencias Repetidas Terminales
13.
PLoS One ; 15(11): e0241889, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33166324

RESUMEN

Raphidocelis subcapitata is one of the most frequently used species for algal growth inhibition tests. Accordingly, many microalgal culture collections worldwide maintain R. subcapitata for distribution to users. All R. subcapitata strains maintained in these collections are derived from the same cultured strain, NIVA-CHL1. However, considering that 61 years have passed since this strain was isolated, we suspected that NIVA-CHL1 in culture collections might have acquired various mutations. In this study, we compared the genome sequences among NIVA-CHL1 from 8 microalgal culture collections and one laboratory in Japan to evaluate the presence of mutations. We found single-nucleotide polymorphisms or indels at 19,576 to 28,212 sites per strain in comparison with the genome sequence of R. subcapitata NIES-35, maintained at the National Institute for Environmental Studies, Tsukuba, Japan. These mutations were detected not only in non-coding but also in coding regions; some of the latter mutations may affect protein function. In growth inhibition test with 3,5-dichlorophenol, EC50 values varied 2.6-fold among the 9 strains. In the ATCC 22662-2 and CCAP 278/4 strains, we also detected a mutation in the gene encoding small-conductance mechanosensitive ion channel, which may lead to protein truncation and loss of function. Growth inhibition test with sodium chloride suggested that osmotic regulation has changed in ATCC 22662-2 and CCAP 278/4 in comparison with NIES-35.


Asunto(s)
Proteínas Algáceas/genética , Chlorophyceae/crecimiento & desarrollo , Chlorophyceae/genética , Polimorfismo de Nucleótido Simple , Cloruro de Sodio/farmacología , Secuenciación Completa del Genoma/métodos , Proteínas Algáceas/efectos de los fármacos , Chlorophyceae/efectos de los fármacos , Medios de Cultivo/química , Regulación de la Expresión Génica/efectos de los fármacos , Japón
14.
Microbiol Resour Announc ; 9(14)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32241856

RESUMEN

Microcystis aeruginosa is a bloom-forming cyanobacterium found in freshwater environments. The draft genomes of the M. aeruginosa strains NIES-3787, NIES-3804, NIES-3806, and NIES-3807, which were isolated from Lake Kasumigaura, Japan, were sequenced. The genome sizes of NIES-3787, NIES-3804, NIES-3806, and NIES-3807 were 4,524,637, 4,522,701, 4,370,004, and 4,378,226 bp, respectively.

15.
J Genomics ; 8: 1-6, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31892993

RESUMEN

Microcystis aeruginosa, a bloom-forming cyanobacterium distributed mainly in freshwater environments, can be divided into at least 12 groups (A-K and X) based on multi-locus phylogenetic analyses. In this study, we characterized the genome of microcystin-producing M. aeruginosa NIES-102, assigned to group A, isolated from Lake Kasumigaura, Japan. The complete genome sequence of M. aeruginosa NIES-102 comprised a 5.87-Mbp circular chromosome containing 5,330 coding sequences. The genome was the largest among all sequenced genomes for the species. In a comparison with the genome of M. aeruginosa NIES-843, which belongs to the same group, the microcystin biosynthetic gene cluster and CRISPR-Cas locus were highly similar. A synteny analysis revealed small-scale rearrangements between the two genomes. Genes encoding transposases were more abundant in these two genomes than in other Microcystis genomes. Our results improve our understanding of structural genomic changes and adaptation to a changing environment in the species.

16.
Nat Commun ; 10(1): 5529, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827088

RESUMEN

Phagocytosis is a key eukaryotic feature, conserved from unicellular protists to animals, that enabled eukaryotes to feed on other organisms. It could also be a driving force behind endosymbiosis, a process by which α-proteobacteria and cyanobacteria evolved into mitochondria and plastids, respectively. Here we describe a planctomycete bacterium, 'Candidatus Uab amorphum', which is able to engulf other bacteria and small eukaryotic cells through a phagocytosis-like mechanism. Observations via light and electron microscopy suggest that this bacterium digests prey cells in specific compartments. With the possible exception of a gene encoding an actin-like protein, analysis of the 'Ca. Uab amorphum' genomic sequence does not reveal any genes homologous to eukaryotic phagocytosis genes, suggesting that cell engulfment in this microorganism is probably not homologous to eukaryotic phagocytosis. The discovery of this "phagotrophic" bacterium expands our understanding of the cellular complexity of prokaryotes, and may be relevant to the origin of eukaryotic cells.


Asunto(s)
Alphaproteobacteria/fisiología , Fagocitosis , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Alphaproteobacteria/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Biológica , Genoma Bacteriano , Filogenia
17.
Microbiol Resour Announc ; 8(43)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31649090

RESUMEN

Three freshwater planktonic filamentous cyanobacterial strains, Dolichospermum planctonicum NIES-80, Planktothrix agardhii NIES-905, and Sphaerospermopsis reniformis NIES-1949, were sequenced. The genome sizes of NIES-80, NIES-905, and NIES-1949 were 4,571,002 bp, 5,512,454 bp, and 6,025,023 bp, and the number of protein-coding genes in each genome was 4,009, 4,925, and 5,408, respectively.

18.
Sci Rep ; 9(1): 14559, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601926

RESUMEN

Diatoms play important roles in primary production and carbon transportation in various environments. Large-scale diatom bloom occurs worldwide; however, metabolic responses of diatoms to environmental conditions have been little studied. Here, we targeted the Oyashio region of the western subarctic Pacific where diatoms bloom every spring and investigated metabolic response of major diatoms to bloom formation by comparing metatranscriptomes between two depths corresponding to different bloom phases. Thalassiosira nordenskioeldii and Chaetoceros debilis are two commonly occurring species at the study site. The gene expression profile was drastically different between the surface (late decline phase of the bloom; 10 m depth) and the subsurface chlorophyll maximum (SCM, initial decline phase of the bloom; 30 m depth); in particular, both species had high expression of genes for nitrate uptake at the surface, but for ammonia uptake at the SCM. Our culture experiments using T. nordenskioeldii imitating the environmental conditions showed that gene expression for nitrate and ammonia transporters was induced by nitrate addition and active cell division, respectively. These results indicate that the requirement for different nitrogen compounds is a major determinant of diatom species responses during bloom maturing.


Asunto(s)
Mapeo Cromosómico , Diatomeas/fisiología , Transcriptoma , Biomasa , Carbono/química , Clorofila/metabolismo , Ecología , Ecosistema , Nitratos/química , Nitrógeno/química , Océano Pacífico , Fitoplancton/fisiología , RNA-Seq , Estaciones del Año , Agua de Mar
19.
J Genomics ; 7: 56-59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31588248

RESUMEN

Arthrospira is an economically important cyanobacterium that contains many useful products, including proteins, vitamins, lipids, and pigments, and it is distributed in several alkaline soda lakes. Arthrospira platensis NIES-46 produces large amounts of hydrogen. In this study, we sequenced the NIES-46 draft genome and performed comparative analyses among Arthrospira species to elucidate the genomic background of this strain. The genome consists of 5.7 Mbp with a GC% of 44.5% and encodes 5,008 proteins. Our phylogenetic analysis using multiple orthologous proteins shows that Arthrospira is divided into two clades and that NIES-46 is closely related to A. platensis NIES-39. The genome structure and protein functions are highly conserved between A. platensis NIES-39 and NIES-46, suggesting that these two strains have recently diverged. Genes involved in hydrogen production are well-conserved among Arthrospira species, indicating conserved abilities to produce hydrogen.

20.
Sci Rep ; 8(1): 8058, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29795299

RESUMEN

The Sphaeropleales are a dominant group of green algae, which contain species important to freshwater ecosystems and those that have potential applied usages. In particular, Raphidocelis subcapitata is widely used worldwide for bioassays in toxicological risk assessments. However, there are few comparative genome analyses of the Sphaeropleales. To reveal genome evolution in the Sphaeropleales based on well-resolved phylogenetic relationships, nuclear, mitochondrial, and plastid genomes were sequenced in this study. The plastid genome provides insights into the phylogenetic relationships of R. subcapitata, which is located in the most basal lineage of the four species in the family Selenastraceae. The mitochondrial genome shows dynamic evolutionary histories with intron expansion in the Selenastraceae. The 51.2 Mbp nuclear genome of R. subcapitata, encoding 13,383 protein-coding genes, is more compact than the genome of its closely related oil-rich species, Monoraphidium neglectum (Selenastraceae), Tetradesmus obliquus (Scenedesmaceae), and Chromochloris zofingiensis (Chromochloridaceae); however, the four species share most of their genes. The Sphaeropleales possess a large number of genes for glycerolipid metabolism and sugar assimilation, which suggests that this order is capable of both heterotrophic and mixotrophic lifestyles in nature. Comparison of transporter genes suggests that the Sphaeropleales can adapt to different natural environmental conditions, such as salinity and low metal concentrations.


Asunto(s)
Adaptación Fisiológica , Chlorophyceae/clasificación , Chlorophyceae/genética , Ambiente , Evolución Molecular , Genoma Mitocondrial , Genoma de Planta , Genoma de Plastidios , Núcleo Celular/genética , Ecosistema , Genes de Plantas , Variación Genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...