Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Cancer ; 123(11): 1633-1643, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32921792

RESUMEN

BACKGROUND: Annexin A1 is expressed specifically on the tumour vasculature surface. Intravenously injected IF7 targets tumour vasculature via annexin A1. We tested the hypothesis that IF7 overcomes the blood-brain barrier and that the intravenously injected IF7C(RR)-SN38 eradicates brain tumours in the mouse. METHODS: (1) A dual-tumour model was generated by inoculating luciferase-expressing melanoma B16 cell line, B16-Luc, into the brain and under the skin of syngeneic C57BL/6 mice. IF7C(RR)-SN38 was injected intravenously daily at 7.0 µmoles/kg and growth of tumours was assessed by chemiluminescence using an IVIS imager. A similar dual-tumour model was generated with the C6-Luc line in immunocompromised SCID mice. (2) IF7C(RR)-SN38 formulated with 10% Solutol HS15 was injected intravenously daily at 2.5 µmoles/kg into two brain tumour mouse models: B16-Luc cells in C57BL/6 mice, and C6-Luc cells in nude mice. RESULTS: (1) Daily IF7C(RR)-SN38 injection suppressed tumour growth regardless of cell lines or mouse strains. (2) Daily injection of Solutol-formulated IF7C(RR)-SN38 led into complete disappearance of B16-Luc brain tumour in C57BL/6 mice, whereas this did not occur in C6-Luc in nude mice. CONCLUSIONS: IF7C(RR)-SN38 crosses the blood-brain barrier and suppresses growth of brain tumours in mouse models. Solutol HS15-formulated IF7C(RR)-SN38 may have promoted an antitumour immune response.


Asunto(s)
Anexina A1/metabolismo , Antineoplásicos/farmacología , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas , Portadores de Fármacos/farmacología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Péptidos , Ratas
2.
J Biol Chem ; 288(7): 5007-16, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23269668

RESUMEN

Chst10 adds sulfate to glucuronic acid to form a carbohydrate antigen, HNK-1, in glycoproteins and glycolipids. To determine the role of Chst10 in vivo, we generated systemic Chst10-deficient mutant mice. Although Chst10(-/-) mice were born and grew to adulthood with no gross defects, they were subfertile. Uteri from Chst10(-/-) females at the pro-estrus stage were larger than those from wild-type females and exhibited a thick uterine endometrium. Serum estrogen levels in Chst10(-/-) females were higher than those from wild-type females, suggesting impaired down-regulation of estrogen. Because steroid hormones are often conjugated to glucuronic acid, we hypothesized that Chst10 sulfates glucuronidated steroid hormone to regulate steroid hormone in vivo. Enzymatic activity assays and structural analysis of Chst10 products by HPLC and mass spectrometry revealed that Chst10 indeed sulfates glucuronidated estrogen, testosterone, and other steroid hormones. We also identified an HPLC peak corresponding to sulfated and glucuronidated estradiol in serum from wild-type but not from Chst10 null female mice. Estrogen-response element reporter assays revealed that Chst10-modified estrogen likely did not bind to its receptor. These results suggest that subfertility exhibited by female mice following Chst10 loss results from dysregulation of estrogen. Given that Chst10 transfers sulfates to several steroid hormones, Chst10 likely functions in widespread regulation of steroid hormones in vivo.


Asunto(s)
Esteroides/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Animales , Estrógenos/sangre , Femenino , Regulación de la Expresión Génica , Vectores Genéticos , Ácido Glucurónico/química , Glucolípidos/metabolismo , Células HEK293 , Humanos , Células Asesinas Naturales/citología , Ratones , Ratones Transgénicos , Modelos Genéticos , Neuronas/metabolismo , Recombinación Genética , Testosterona/sangre
3.
J Biol Chem ; 286(37): 32824-33, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21784847

RESUMEN

Astrocytic tumor is the most prevalent primary brain tumor. However, the role of cell surface carbohydrates in astrocytic tumor invasion is not known. In a previous study, we showed that polysialic acid facilitates astrocytic tumor invasion and thereby tumor progression. Here, we examined the role of HNK-1 glycan in astrocytic tumor invasion. A Kaplan-Meier analysis of 45 patients revealed that higher HNK-1 expression levels were positively associated with increased survival of patients. To determine the role of HNK-1 glycan, we transfected C6 glioma cells, which lack HNK-1 glycan expression, with ß1,3-glucuronyltransferase-P cDNA, generating HNK-1-positive cells. When these cells were injected into the mouse brain, the resultant tumors were 60% smaller than tumors emerging from injection of the mock-transfected HNK-1-negative C6 cells. HNK-1-positive C6 cells also grew more slowly than mock-transfected C6 cells in anchorage-dependent and anchorage-independent assays. C6-HNK-1 cells migrated well after treatment of anti-ß1 integrin antibody, whereas the same treatment inhibited cell migration of mock-transfected C6 cells. Similarly, α-dystroglycan containing HNK-1 glycan is different from those containing the laminin-binding glycans, supporting the above conclusion that C6-HNK-1 cells migrate independently from ß1-integrin-mediated signaling. Moreover, HNK-1-positive cells exhibited attenuated activation of ERK 1/2 compared with mock-transfected C6 cells, whereas focal adhesion kinase activation was equivalent in both cell types. Overall, these results indicate that HNK-1 glycan functions as a tumor suppressor.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Glucanos/metabolismo , Animales , Anticuerpos/farmacología , Astrocitoma/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Integrina beta1/metabolismo , Masculino , Ratones , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas de Neoplasias/metabolismo , Trasplante de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...