Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Data Brief ; 45: 108689, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36426084

RESUMEN

Psychrophilic methanotrophic bacteria are abundant and play an important role in methane removal in cold methanogenic environments, such as boreal and arctic terrestrial and aquatic ecosystems. They could be also applied in the bioconversion of biogas and natural gas into value-added products (e.g., chemicals and single-cell protein) in cold regions. Hence, isolation and genome sequencing of psychrophilic methanotrophic bacteria are needed to provide important data on their functional capabilities. However, psychrophilic methanotroph isolates and consequently their genome sequences are rare. Fortunately, Leibniz Institute, DSMZ-German Collection of Microorganisms and Cell Cultures GmbH was able to revive the long-extinct pure culture of a psychrophilic methanotrophic tundra soil isolate, Methylobacter psychrophilus Z-0021 (DSM 9914), from their stocks during 2022. Here, we describe the de novo assembled genome sequence of Methylobacter psychrophilus Z-0021 comprising a total of 4691082 bp in 156 contigs with a G+C content of 43.1% and 4074 coding sequences. The preliminary genome annotation analysis of Z-0021 identified genes encoding oxidation of methane, methanol and formaldehyde, assimilation of carbon and nitrate, and N2 fixation. In pairwise genome-to-genome comparisons with closely related methanotrophic strains, the strain Z-0021 had an average nucleotide identity (ANI) of 92.9% and 78.2% and a digital DNA-DNA hybridization (dDDH) value of 50.6% and 22% with a recently described psychrophilic, lake isolate, Methylobacter sp. S3L5C and a psychrotrophic, arctic wetland soil isolate, Methylobacter tundripaludum SV96, respectively. In addition, the respective similarities between genomes of the strains S3L5C and SV96 were 78.1% ANI and 21.8% dDDH. Comparison to widely used ANI and dDDH thresholds to delineate unique species (<95% ANI and <70% dDDH) suggests that Methylobacter psychrophilus Z-0021, Methylobacter tundripaludum SV96 and Methylobacter sp. S3L5C are different species. The draft genome of Z-0021 has been deposited at GenBank under the accession JAOEGU000000000.

2.
Front Microbiol ; 13: 874627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663866

RESUMEN

Methane (CH4) is a sustainable carbon feedstock for value-added chemical production in aerobic CH4-oxidizing bacteria (methanotrophs). Under substrate-limited (e.g., oxygen and nitrogen) conditions, CH4 oxidation results in the production of various short-chain organic acids and platform chemicals. These CH4-derived products could be broadened by utilizing them as feedstocks for heterotrophic bacteria. As a proof of concept, a two-stage system for CH4 abatement and 1-alkene production was developed in this study. Type I and Type II methanotrophs, Methylobacter tundripaludum SV96 and Methylocystis rosea SV97, respectively, were investigated in batch tests under different CH4 and air supplementation schemes. CH4 oxidation under either microaerobic or aerobic conditions induced the production of formate, acetate, succinate, and malate in M. tundripaludum SV96, accounting for 4.8-7.0% of consumed carbon from CH4 (C-CH4), while M. rosea SV97 produced the same compounds except for malate, and with lower efficiency than M. tundripaludum SV96, accounting for 0.7-1.8% of consumed C-CH4. For the first time, this study demonstrated the use of organic acid-rich spent media of methanotrophs cultivating engineered Acinetobacter baylyi ADP1 'tesA-undA cells for 1-alkene production. The highest yield of 1-undecene was obtained from the spent medium of M. tundripaludum SV96 at 68.9 ± 11.6 µmol mol Csubstrate -1. However, further large-scale studies on fermenters and their optimization are required to increase the production yields of organic acids in methanotrophs.

3.
ISME Commun ; 2(1): 85, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37938755

RESUMEN

Lakes and ponds are considered as a major natural source of CH4 emissions, particularly during the ice-free period in boreal ecosystems. Aerobic methane-oxidizing bacteria (MOB), which utilize CH4 using oxygen as an electron acceptor, are one of the dominant microorganisms in the CH4-rich water columns. Metagenome-assembled genomes (MAGs) have revealed the genetic potential of MOB from boreal aquatic ecosystems for various microaerobic/anaerobic metabolic functions. However, experimental proof of these functions, i.e., organic acid production via fermentation, by lake MOB is lacking. In addition, psychrophilic (i.e., cold-loving) MOB and their CH4-oxidizing process have rarely been investigated. In this study, we isolated, provided a taxonomic description, and analyzed the genome of Methylobacter sp. S3L5C, a psychrophilic MOB, from a boreal lake in Finland. Based on phylogenomic comparisons to MAGs, Methylobacter sp. S3L5C represented a ubiquitous cluster of Methylobacter spp. in boreal aquatic ecosystems. At optimal temperatures (3-12 °C) and pH (6.8-8.3), the specific growth rates (µ) and CH4 utilization rate were in the range of 0.018-0.022 h-1 and 0.66-1.52 mmol l-1 d-1, respectively. In batch cultivation, the isolate could produce organic acids, and the concentrations were elevated after replenishing CH4 and air into the headspace. Up to 4.1 mM acetate, 0.02 mM malate, and 0.07 mM propionate were observed at the end of the test under optimal operational conditions. The results herein highlight the key role of Methylobacter spp. in regulating CH4 emissions and their potential to provide CH4-derived organic carbon compounds to surrounding heterotrophic microorganisms in cold ecosystems.

4.
Data Brief ; 38: 107364, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34557576

RESUMEN

Methanotrophic bacteria inhabit a wide range of natural (e.g. wetlands, lakes and soils) and anthropogenic (e.g. wastewater treatment plants and landfills) environments. They play a crucial role in mitigating atmospheric emissions of the greenhouse gas methane. There is also a growing interest in applying methanotrophs in the bioconversion of biogas - and natural gas - methane into value-added products (e.g. chemicals and single-cell protein). Hence, isolation and genome sequencing of methanotrophic bacteria is needed to provide important data on their functional capabilities. Here, we describe the de novo assembled draft genome sequences of Methylovulum psychrotolerans strain S1L isolated from hypoxic water column layer of boreal Lake Lovojärvi (Southern Finland), comprising total of 5090628 bp in 11 contigs with G+C - content of 50.9% and containing 4554 coding sequences. The draft genome of strain S1L represents the first published genome of M. psychrotolerans strain isolated from lake ecosystems. In addition, we present the genome sequence of Methylomonas paludis strain S2AM, isolated from water column of boreal Lake Alinen Mustajärvi (Southern Finland), comprising 3673651 bp in 1 contig with G+C - content of 48.2% and 3294 coding sequences. The draft genome of strain S2AM represents the first published genome of M. paludis. The preliminary genome annotation analysis of both S1L and S2AM identified genes encoding oxidation of methane, methanol, formaldehyde and formate, assimilation of carbon, ammonium and nitrate, N2 fixation, as well as various enzymes enabling the survival in hypoxic conditions, i.e. high-affinity oxidase, hemerythrins, fermentation enzymes (for production of acetate, succinate and H2) and respiratory nitrite reductases. The draft genomes have been deposited at GenBank under the accession JAGVVN000000000 for S1L and CP073754 for S2AM.

5.
Mol Ecol ; 30(20): 5094-5104, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34387003

RESUMEN

Temperature is an important factor governing microbe-mediated carbon feedback from permafrost soils. The link between taxonomic and functional microbial responses to temperature change remains elusive due to the lack of studies assessing both aspects of microbial ecology. Our previous study reported microbial metabolic and trophic shifts in response to short-term temperature increases in Arctic peat soil, and linked these shifts to higher CH4 and CO2 production rates (Proceedings of the National Academy of Sciences of the United States of America, 112, E2507-E2516). Here, we studied the taxonomic composition and functional potential of samples from the same experiment. We see that along a high-resolution temperature gradient (1-30°C), microbial communities change discretely, but not continuously or stochastically, in response to rising temperatures. The taxonomic variability may thus in part reflect the varied temperature responses of individual taxa and the competition between these taxa for resources. These taxonomic responses contrast the stable functional potential (metagenomic-based) across all temperatures or the previously observed metabolic or trophic shifts at key temperatures. Furthermore, with rising temperatures we observed a progressive decrease in species diversity (Shannon Index) and increased dispersion of greenhouse gas (GHG) production rates. We conclude that the taxonomic variation is decoupled from both the functional potential of the community and the previously observed temperature-dependent changes in microbial function. However, the reduced diversity at higher temperatures might help explain the higher variability in GHG production at higher temperatures.


Asunto(s)
Microbiota , Suelo , Regiones Árticas , Dióxido de Carbono/análisis , Metano , Microbiota/genética , Microbiología del Suelo , Temperatura
6.
Microorganisms ; 9(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445466

RESUMEN

The second largest sink for atmospheric methane (CH4) is atmospheric methane oxidizing-bacteria (atmMOB). How atmMOB are able to sustain life on the low CH4 concentrations in air is unknown. Here, we show that during growth, with air as its only source for energy and carbon, the recently isolated atmospheric methane-oxidizer Methylocapsa gorgona MG08 (USCα) oxidizes three atmospheric energy sources: CH4, carbon monoxide (CO), and hydrogen (H2) to support growth. The cell-specific CH4 oxidation rate of M. gorgona MG08 was estimated at ~0.7 × 10-18 mol cell-1 h-1, which, together with the oxidation of CO and H2, supplies 0.38 kJ Cmol-1 h-1 during growth in air. This is seven times lower than previously assumed necessary to support bacterial maintenance. We conclude that atmospheric methane-oxidation is supported by a metabolic flexibility that enables the simultaneous harvest of CH4, H2 and CO from air, but the key characteristic of atmospheric CH4 oxidizing bacteria might be very low energy requirements.

7.
Sci Rep ; 10(1): 22412, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33376244

RESUMEN

Northern peatlands typically develop through succession from fens dominated by the moss family Amblystegiaceae to bogs dominated by the moss genus Sphagnum. How the different plants and abiotic environmental conditions provided in Amblystegiaceae and Sphagnum peat shape the respective moss associated microbial communities is unknown. Through a large-scale molecular and biogeochemical study spanning Arctic, sub-Arctic and temperate regions we assessed how the endo- and epiphytic microbial communities of natural northern peatland mosses relate to peatland type (Sphagnum and Amblystegiaceae), location, moss taxa and abiotic environmental variables. Microbial diversity and community structure were distinctly different between Amblystegiaceae and Sphagnum peatlands, and within each of these two peatland types moss taxon explained the largest part of microbial community variation. Sphagnum and Amblystegiaceae shared few (< 1% of all operational taxonomic units (OTUs)) but strikingly abundant (up to 65% of relative abundance) OTUs. This core community overlapped by one third with the Sphagnum-specific core-community. Thus, the most abundant microorganisms in Sphagnum that are also found in all the Sphagnum plants studied, are the same OTUs as those few shared with Amblystegiaceae. Finally, we could confirm that these highly abundant OTUs were endophytes in Sphagnum, but epiphytes on Amblystegiaceae. We conclude that moss taxa and abiotic environmental variables associate with particular microbial communities. While moss taxon was the most influential parameter, hydrology, pH and temperature also had significant effects on the microbial communities. A small though highly abundant core community is shared between Sphagnum and Amblystegiaceae.


Asunto(s)
Biodiversidad , Bryopsida/microbiología , Microbiota/fisiología , Sphagnopsida/microbiología , Humedales , Regiones Árticas
8.
Ecol Evol ; 10(3): 1339-1351, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32076518

RESUMEN

Frenulate species were identified from a high Arctic methane seep area on Vestnesa Ridge, western Svalbard margin (79°N, Fram Strait) based on mitochondrial cytochrome oxidase subunit I (mtCOI). Two species were found: Oligobrachia haakonmosbiensis, and a new, distinct, and undescribed Oligobrachia species. The new species adds to the cryptic Oligobrachia species complex found at high latitude methane seeps in the north Atlantic and the Arctic. However, this species displays a curled tube morphology and light brown coloration that could serve to distinguish it from other members of the complex. A number of single tentacle individuals were recovered which were initially thought to be members of the only unitentaculate genus, Siboglinum. However, sequencing revealed them to be the new species and the single tentacle morphology, in addition to thin, colorless, and ringless tubes indicate that they are juveniles. This is the first known report of juveniles of northern Oligobrachia. Since the juveniles all appeared to be at about the same developmental stage, it is possible that reproduction is either synchronized within the species, or that despite continuous reproduction, settlement, and growth in the sediment only takes place at specific periods. The new find of the well-known species O. haakonmosbiensis extends its range from the Norwegian Sea to high latitudes of the Arctic in the Fram Strait. We suggest bottom currents serve as the main distribution mechanism for high latitude Oligobrachia species and that water depth constitutes a major dispersal barrier. This explains the lack of overlap between the distributions of northern Oligobrachia species despite exposure to similar current regimes. Our results point toward a single speciation event within the Oligobrachia clade, and we suggest that this occurred in the late Neogene, when topographical changes occurred and exchanges between Arctic and North Atlantic water masses and subsequent thermohaline circulation intensified.

9.
PLoS One ; 13(12): e0209273, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30592732

RESUMEN

We provide the first detailed identification of Barents Sea cold seep frenulate hosts and their symbionts. Mitochondrial COI sequence analysis, in combination with detailed morphological investigations through both light and electron microscopy was used for identifying frenulate hosts, and comparing them to Oligobrachia haakonmosbiensis and Oligobrachia webbi, two morphologically similar species known from the Norwegian Sea. Specimens from sites previously assumed to host O. haakonmosbiensis were included in our molecular analysis, which allowed us to provide new insight on the debate regarding species identity of these Oligobrachia worms. Our results indicate that high Arctic seeps are inhabited by a species that though closely related to Oligobrachia haakonmosbiensis, is nonetheless distinct. We refer to this group as the Oligobrachia sp. CPL-clade, based on the colloquial names of the sites they are currently known to inhabit. Since members of the Oligobrachia sp. CPL-clade cannot be distinguished from O. haakonmosbiensis or O. webbi based on morphology, we suggest that a complex of cryptic Oligobrachia species inhabit seeps in the Norwegian Sea and the Arctic. The symbionts of the Oligobrachia sp. CPL-clade were also found to be closely related to O. haakonmosbiensis symbionts, but genetically distinct. Fluorescent in situ hybridization and transmission electron micrographs revealed extremely dense populations of bacteria within the trophosome of members of the Oligobrachia sp. CPL-clade, which is unusual for frenulates. Bacterial genes for sulfur oxidation were detected and small rod shaped bacteria (round in cross section), typical of siboglinid-associated sulfur-oxidizing bacteria, were seen on electron micrographs of trophosome bacteriocytes, suggesting that sulfide constitutes the main energy source. We hypothesize that specific, local geochemical conditions, in particular, high sulfide fluxes and concentrations could account for the unusually high symbiont densities in members of the Oligrobrachia sp. CPL-clade.


Asunto(s)
Bacterias , Poliquetos/microbiología , Animales , Regiones Árticas , Bacterias/genética , Frío , ADN Mitocondrial , Noruega , Océanos y Mares , Filogenia , Poliquetos/anatomía & histología , Poliquetos/ultraestructura , ARN Bacteriano , ARN Ribosómico 16S , Simbiosis
10.
Sci Rep ; 8(1): 5711, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29632323

RESUMEN

Here we show that a commercial blocking reagent (G2) based on modified eukaryotic DNA significantly improved DNA extraction efficiency. We subjected G2 to an inter-laboratory testing, where DNA was extracted from the same clay subsoil using the same batch of kits. The inter-laboratory extraction campaign revealed large variation among the participating laboratories, but the reagent increased the number of PCR-amplified16S rRNA genes recovered from biomass naturally present in the soils by one log unit. An extensive sequencing approach demonstrated that the blocking reagent was free of contaminating DNA, and may therefore also be used in metagenomics studies that require direct sequencing.


Asunto(s)
ADN Ribosómico/aislamiento & purificación , ARN Ribosómico 16S/aislamiento & purificación , Juego de Reactivos para Diagnóstico/normas , Biomasa , Arcilla , Contaminación de ADN , ADN Ribosómico/genética , Laboratorios , Metagenómica , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo
11.
Proc Natl Acad Sci U S A ; 112(19): E2507-16, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918393

RESUMEN

Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa.


Asunto(s)
Archaea/metabolismo , Calentamiento Global , Metano/biosíntesis , Microbiología del Suelo , Archaea/genética , Regiones Árticas , Carbono/química , Dióxido de Carbono/química , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Ecosistema , Ambiente , Fermentación , Perfilación de la Expresión Génica , Hidrógeno/química , Hidrólisis , Modelos Lineales , Microbiota , Polisacáridos/química , ARN Ribosómico/metabolismo , Suelo/química , Sphagnopsida , Temperatura
12.
Environ Microbiol Rep ; 3(4): 466-72, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23761309

RESUMEN

The dominant terminal process of carbon mineralization in most freshwater wetlands is methanogenesis. With methane being an important greenhouse gas, the predicted warming of the Arctic may provide a positive feedback. However, the amount of methane released to the atmosphere may be controlled by the activity of methane-oxidizing bacteria (methanotrophs) living in the oxic surface layer of wetlands. Previously, methanotrophs have been isolated and identified by genetic profiling in High Arctic wetlands showing the presence of only a few genotypes. Two isolates from Solvatnet (Ny-Ålesund, Spitsbergen; 79°N) are available: Methylobacter tundripaludum (type I) and Methylocystis rosea (type II), raising the question whether the low diversity is a cultivation effect. We have revisited Solvatnet applying stable isotope probing (SIP) with (13) C-labelled methane. 16S rRNA profiling revealed active type I methanotrophs including M. tundripaludum, while no active type II methanotrophs were identified. These results indicate that the extant M. tundripaludum is an active methane oxidizer at its locus typicus; furthermore, Methylobacter seems to be the dominant active genus. Diversity of methanotrophs was low as compared, e.g. to wetland rice fields in the Mediterranean. This low diversity suggests a high vulnerability of Arctic methanotroph communities, which deserves more attention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...