Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928500

RESUMEN

Hell's Gate globin-I (HGb-I) is a thermally stable globin from the aerobic methanotroph Methylacidiphilium infernorum. Here we report that HGb-I interacts with lipids stoichiometrically to induce structural changes in the heme pocket, changing the heme iron distal ligation coordination from hexacoordinate to pentacoordinate. Such changes in heme geometry have only been previously reported for cytochrome c and cytoglobin, linked to apoptosis regulation and enhanced lipid peroxidation activity, respectively. However, unlike cytoglobin and cytochrome c, the heme iron of HGb-I is altered by lipids in ferrous as well as ferric oxidation states. The apparent affinity for lipids in this thermally stable globin is highly pH-dependent but essentially temperature-independent within the range of 20-60 °C. We propose a mechanism to explain these observations, in which lipid binding and stability of the distal endogenous ligand are juxtaposed as a function of temperature. Additionally, we propose that these coupled equilibria may constitute a mechanism through which this acidophilic thermophile senses the pH of its environment.


Asunto(s)
Temperatura , Concentración de Iones de Hidrógeno , Globinas/química , Globinas/metabolismo , Lípidos/química , Hemo/metabolismo , Hemo/química , Conformación Proteica , Modelos Moleculares , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
2.
Biophys J ; 123(16): 2594-2603, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38937973

RESUMEN

Cytochromes c'-α are nitric oxide (NO)-binding heme proteins derived from bacteria that can thrive in a wide range of temperature environments. Studies of mesophilic Alcaligenes xylosoxidans cytochrome c'-α (AxCP-α) have revealed an unusual NO-binding mechanism involving both heme faces, in which NO first binds to form a distal hexa-coordinate Fe(II)-NO (6cNO) intermediate and then displaces the proximal His to form a proximal penta-coordinate Fe(II)-NO (5cNO) final product. Here, we characterize a thermally stable cytochrome c'-α from thermophilic Hydrogenophilus thermoluteolus (PhCP-α) to understand how protein thermal stability affects NO binding. Electron paramagnetic and resonance Raman spectroscopies reveal the formation of a PhCP-α 5cNO product, with time-resolved (stopped-flow) UV-vis absorbance indicating the involvement of a 6cNO intermediate. Relative to AxCP-α, the rates of 6cNO and 5cNO formation in PhCP-α are ∼11- and ∼13-fold lower, respectively. Notably, x-ray crystal structures of PhCP-α in the presence and absence of NO suggest that the sluggish formation of the proximal 5cNO product results from conformational rigidity: the Arg-132 residue (adjacent to the proximal His ligand) is held in place by a salt bridge between Arg-75 and Glu-135 (an interaction not present in AxCP-α or a psychrophilic counterpart). Overall, our data provide fresh insights into structural factors controlling NO binding in heme proteins, including 5cNO complexes relevant to eukaryotic NO sensors.


Asunto(s)
Citocromos c' , Óxido Nítrico , Unión Proteica , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Citocromos c'/química , Citocromos c'/metabolismo , Conformación Proteica , Hydrogenophilaceae/enzimología , Hydrogenophilaceae/metabolismo , Hydrogenophilaceae/química , Temperatura , Modelos Moleculares , Cinética
3.
Chem Sci ; 15(18): 6738-6751, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725499

RESUMEN

In the decade since the discovery of androglobin, a multi-domain hemoglobin of metazoans associated with ciliogenesis and spermatogenesis, there has been little advance in the knowledge of the biochemical and structural properties of this unusual member of the hemoglobin superfamily. Using a method for aligning remote homologues, coupled with molecular modelling and molecular dynamics, we have identified a novel structural alignment to other hemoglobins. This has led to the first stable recombinant expression and characterization of the circularly permuted globin domain. Exceptional for eukaryotic globins is that a tyrosine takes the place of the highly conserved phenylalanine in the CD1 position, a critical point in stabilizing the heme. A disulfide bond, similar to that found in neuroglobin, forms a closed loop around the heme pocket, taking the place of androglobin's missing CD loop and further supporting the heme pocket structure. Highly unusual in the globin superfamily is that the heme iron binds nitric oxide as a five-coordinate complex similar to other heme proteins that have nitric oxide storage functions. With rapid autoxidation and high nitrite reductase activity, the globin appears to be more tailored toward nitric oxide homeostasis or buffering. The use of our multi-template profile alignment method to yield the first biochemical characterisation of the circularly permuted globin domain of androglobin expands our knowledge of the fundamental functioning of this elusive protein and provides a pathway to better define the link between the biochemical traits of androglobin with proposed physiological functions.

4.
Angew Chem Int Ed Engl ; 63(16): e202401379, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38407997

RESUMEN

Ferritins are multimeric cage-forming proteins that play a crucial role in cellular iron homeostasis. All H-chain-type ferritins harbour a diiron site, the ferroxidase centre, at the centre of a 4 α-helical bundle, but bacterioferritins are unique in also binding 12 hemes per 24 meric assembly. The ferroxidase centre is known to be required for the rapid oxidation of Fe2+ during deposition of an immobilised ferric mineral core within the protein's hollow interior. In contrast, the heme of bacterioferritin is required for the efficient reduction of the mineral core during iron release, but has little effect on the rate of either oxidation or mineralisation of iron. Thus, the current view is that these two cofactors function in iron uptake and release, respectively, with no functional overlap. However, rapid electron transfer between the heme and ferroxidase centre of bacterioferritin from Escherichia coli was recently demonstrated, suggesting that the two cofactors may be functionally connected. Here we report absorbance and (magnetic) circular dichroism spectroscopies, together with in vitro assays of iron-release kinetics, which demonstrate that the ferroxidase centre plays an important role in the reductive mobilisation of the bacterioferritin mineral core, which is dependent on the heme-ferroxidase centre electron transfer pathway.


Asunto(s)
Ceruloplasmina , Hierro , Hierro/química , Ceruloplasmina/química , Escherichia coli/metabolismo , Ferritinas/química , Proteínas Bacterianas/metabolismo , Grupo Citocromo b/química , Minerales , Oxidación-Reducción , Hemo/metabolismo
5.
Chem Sci ; 14(44): 12518-12534, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38020392

RESUMEN

In heme enzymes, such as members of the dye-decolorising peroxidase (DyP) family, the formation of the highly oxidising catalytic Fe(iv)-oxo intermediates following reaction with hydrogen peroxide can lead to free radical migration (hole hopping) from the heme to form cationic tyrosine and/or tryptophan radicals. These species are highly oxidising (∼1 V vs. NHE) and under certain circumstances can catalyse the oxidation of organic substrates. Factors that govern which specific tyrosine or tryptophan the free radical migrates to in heme enzymes are not well understood, although in the case of tyrosyl radical formation the nearby proximity of a proton acceptor is a recognised facilitating factor. By using an A-type member of the DyP family (DtpAa) as an exemplar, we combine protein engineering, X-ray crystallography, hole-hopping calculations, EPR spectroscopy and kinetic modelling to provide compelling new insights into the control of radical migration pathways following reaction of the heme with hydrogen peroxide. We demonstrate that the presence of a tryptophan/tyrosine dyad motif displaying a T-shaped orientation of aromatic rings on the proximal side of the heme dominates the radical migration landscape in wild-type DtpAa and continues to do so following the rational engineering into DtpAa of a previously identified radical migration pathway in an A-type homolog on the distal side of the heme. Only on disrupting the proximal dyad, through removal of an oxygen atom, does the radical migration pathway then switch to the engineered distal pathway to form the desired tyrosyl radical. Implications for protein design and biocatalysis are discussed.

6.
J Biol Chem ; 299(6): 104742, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100286

RESUMEN

The structural basis by which gas-binding heme proteins control their interactions with NO, CO, and O2 is fundamental to enzymology, biotechnology, and human health. Cytochromes c' (cyts c') are a group of putative NO-binding heme proteins that fall into two families: the well-characterized four alpha helix bundle fold (cyts c'-α) and an unrelated family with a large beta-sheet fold (cyts c'-ß) resembling that of cytochromes P460. A recent structure of cyt c'-ß from Methylococcus capsulatus Bath revealed two heme pocket phenylalanine residues (Phe 32 and Phe 61) positioned near the distal gas-binding site. This feature, dubbed the "Phe cap," is highly conserved within the sequences of other cyts c'-ß but is absent in their close homologs, the hydroxylamine-oxidizing cytochromes P460, although some do contain a single Phe residue. Here, we report an integrated structural, spectroscopic, and kinetic characterization of cyt c'-ß from Methylococcus capsulatus Bath complexes with diatomic gases, focusing on the interaction of the Phe cap with NO and CO. Significantly, crystallographic and resonance Raman data show that orientation of the electron-rich aromatic ring face of Phe 32 toward distally bound NO or CO is associated with weakened backbonding and higher off rates. Moreover, we propose that an aromatic quadrupole also contributes to the unusually weak backbonding reported for some heme-based gas sensors, including the mammalian NO sensor, soluble guanylate cyclase. Collectively, this study sheds light on the influence of highly conserved distal Phe residues on heme-gas complexes of cytochrome c'-ß, including the potential for aromatic quadrupoles to modulate NO and CO binding in other heme proteins.


Asunto(s)
Citocromos c' , Methylococcus capsulatus , Humanos , Citocromos c'/química , Gases , Hemo/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Methylococcus capsulatus/química
7.
J Biol Inorg Chem ; 26(7): 743-761, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34477969

RESUMEN

Structure determination of proteins and enzymes by X-ray crystallography remains the most widely used approach to complement functional and mechanistic studies. Capturing the structures of intact redox states in metalloenzymes is critical for assigning the chemistry carried out by the metal in the catalytic cycle. Unfortunately, X-rays interact with protein crystals to generate solvated photoelectrons that can reduce redox active metals and hence change the coordination geometry and the coupled protein structure. Approaches to mitigate such site-specific radiation damage continue to be developed, but nevertheless application of such approaches to metalloenzymes in combination with mechanistic studies are often overlooked. In this review, we summarize our recent structural and kinetic studies on a set of three heme peroxidases found in the bacterium Streptomyces lividans that each belong to the dye decolourizing peroxidase (DyP) superfamily. Kinetically, each of these DyPs has a distinct reactivity with hydrogen peroxide. Through a combination of low dose synchrotron X-ray crystallography and zero dose serial femtosecond X-ray crystallography using an X-ray free electron laser (XFEL), high-resolution structures with unambiguous redox state assignment of the ferric and ferryl (FeIV = O) heme species have been obtained. Experiments using stopped-flow kinetics, solvent-isotope exchange and site-directed mutagenesis with this set of redox state validated DyP structures have provided the first comprehensive kinetic and structural framework for how DyPs can modulate their distal heme pocket Asp/Arg dyad to use either the Asp or the Arg to facilitate proton transfer and rate enhancement of peroxide heterolysis.


Asunto(s)
Ácido Aspártico , Peroxidasas , Arginina/metabolismo , Cristalografía por Rayos X , Cinética , Oxidación-Reducción , Peroxidasas/metabolismo , Rayos X
8.
ACS Catal ; 11(18): 11532-11541, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34557328

RESUMEN

Conformational sampling profoundly impacts the overall activity and temperature dependence of enzymes. Peroxidases have emerged as versatile platforms for high-value biocatalysis owing to their broad palette of potential biotransformations. Here, we explore the role of conformational sampling in mediating activity in the de novo peroxidase C45. We demonstrate that 2,2,2-triflouoroethanol (TFE) affects the equilibrium of enzyme conformational states, tending toward a more globally rigid structure. This is correlated with increases in both stability and activity. Notably, these effects are concomitant with the emergence of curvature in the temperature-activity profile, trading off activity gains at ambient temperature with losses at high temperatures. We apply macromolecular rate theory (MMRT) to understand enzyme temperature dependence data. These data point to an increase in protein rigidity associated with a difference in the distribution of protein dynamics between the ground and transition states. We compare the thermodynamics of the de novo enzyme activity to those of a natural peroxidase, horseradish peroxidase. We find that the native enzyme resembles the rigidified de novo enzyme in terms of the thermodynamics of enzyme catalysis and the putative distribution of protein dynamics between the ground and transition states. The addition of TFE apparently causes C45 to behave more like the natural enzyme. Our data suggest robust, generic strategies for improving biocatalytic activity by manipulating protein rigidity; for functional de novo protein catalysts in particular, this can provide more enzyme-like catalysts without further rational engineering, computational redesign, or directed evolution.

9.
J Biomed Res ; 35(4): 294-300, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-34282059

RESUMEN

This mini-review gives a brief account of the emergence of the electron paramagnetic resonance (EPR) spectroscopy in the second half of the 20 th century and reports the continuous wave EPR spectroscopy studies on human and animal blood. The question posed by this review is whether the EPR spectroscopy in the form it appeared 70 years ago is still able to provide useful information about different pathological conditions in humans, particularly in the area of diagnosis.

10.
Angew Chem Int Ed Engl ; 60(15): 8376-8379, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33460502

RESUMEN

The iron redox cycle in ferritins is not completely understood. Bacterioferritins are distinct from other ferritins in that they contain haem groups. It is acknowledged that the two iron motifs in bacterioferritins, the di-nuclear ferroxidase centre and the haem B group, play key roles in two opposing processes, iron sequestration and iron mobilisation, respectively, and the two redox processes are independent. Herein, we show that in Escherichia coli bacterioferritin, there is an electron transfer pathway from the haem to the ferroxidase centre suggesting a new role(s) haem might play in bacterioferritins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ceruloplasmina/metabolismo , Grupo Citocromo b/metabolismo , Ferritinas/metabolismo , Hemo/metabolismo , Proteínas Bacterianas/química , Ceruloplasmina/química , Grupo Citocromo b/química , Transporte de Electrón , Escherichia coli/química , Escherichia coli/metabolismo , Ferritinas/química , Hemo/química
11.
Angew Chem Int Ed Engl ; 60(15): 8361-8369, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33482043

RESUMEN

Both O2 and H2 O2 can oxidize iron at the ferroxidase center (FC) of Escherichia coli bacterioferritin (EcBfr) but mechanistic details of the two reactions need clarification. UV/Vis, EPR, and Mössbauer spectroscopies have been used to follow the reactions when apo-EcBfr, pre-loaded anaerobically with Fe2+ , was exposed to O2 or H2 O2 . We show that O2 binds di-Fe2+ FC reversibly, two Fe2+ ions are oxidized in concert and a H2 O2 molecule is formed and released to the solution. This peroxide molecule further oxidizes another di-Fe2+ FC, at a rate circa 1000 faster than O2 , ensuring an overall 1:4 stoichiometry of iron oxidation by O2 . Initially formed Fe3+ can further react with H2 O2 (producing protein bound radicals) but relaxes within seconds to an H2 O2 -unreactive di-Fe3+ form. The data obtained suggest that the primary role of EcBfr in vivo may be to detoxify H2 O2 rather than sequester iron.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ceruloplasmina/metabolismo , Grupo Citocromo b/metabolismo , Escherichia coli/química , Ferritinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/química , Ceruloplasmina/química , Grupo Citocromo b/química , Escherichia coli/metabolismo , Ferritinas/química , Peróxido de Hidrógeno/química , Hierro/química , Modelos Moleculares , Oxidación-Reducción , Oxígeno/química
12.
Angew Chem Weinheim Bergstr Ger ; 133(15): 8457-8460, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38505322

RESUMEN

The iron redox cycle in ferritins is not completely understood. Bacterioferritins are distinct from other ferritins in that they contain haem groups. It is acknowledged that the two iron motifs in bacterioferritins, the di-nuclear ferroxidase centre and the haem B group, play key roles in two opposing processes, iron sequestration and iron mobilisation, respectively, and the two redox processes are independent. Herein, we show that in Escherichia coli bacterioferritin, there is an electron transfer pathway from the haem to the ferroxidase centre suggesting a new role(s) haem might play in bacterioferritins.

13.
Angew Chem Weinheim Bergstr Ger ; 133(15): 8442-8450, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38529354

RESUMEN

Both O2 and H2O2 can oxidize iron at the ferroxidase center (FC) of Escherichia coli bacterioferritin (EcBfr) but mechanistic details of the two reactions need clarification. UV/Vis, EPR, and Mössbauer spectroscopies have been used to follow the reactions when apo-EcBfr, pre-loaded anaerobically with Fe2+, was exposed to O2 or H2O2. We show that O2 binds di-Fe2+ FC reversibly, two Fe2+ ions are oxidized in concert and a H2O2 molecule is formed and released to the solution. This peroxide molecule further oxidizes another di-Fe2+ FC, at a rate circa 1000 faster than O2, ensuring an overall 1:4 stoichiometry of iron oxidation by O2. Initially formed Fe3+ can further react with H2O2 (producing protein bound radicals) but relaxes within seconds to an H2O2-unreactive di-Fe3+ form. The data obtained suggest that the primary role of EcBfr in vivo may be to detoxify H2O2 rather than sequester iron.

14.
Angew Chem Int Ed Engl ; 59(48): 21656-21662, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32780931

RESUMEN

Obtaining structures of intact redox states of metal centers derived from zero dose X-ray crystallography can advance our mechanistic understanding of metalloenzymes. In dye-decolorising heme peroxidases (DyPs), controversy exists regarding the mechanistic role of the distal heme residues aspartate and arginine in the heterolysis of peroxide to form the catalytic intermediate compound I (FeIV =O and a porphyrin cation radical). Using serial femtosecond X-ray crystallography (SFX), we have determined the pristine structures of the FeIII and FeIV =O redox states of a B-type DyP. These structures reveal a water-free distal heme site that, together with the presence of an asparagine, imply the use of the distal arginine as a catalytic base. A combination of mutagenesis and kinetic studies corroborate such a role. Our SFX approach thus provides unique insight into how the distal heme site of DyPs can be tuned to select aspartate or arginine for the rate enhancement of peroxide heterolysis.


Asunto(s)
Arginina/metabolismo , Colorantes/metabolismo , Hemo/metabolismo , Compuestos de Hierro/metabolismo , Oxígeno/metabolismo , Peroxidasa/metabolismo , Arginina/química , Biocatálisis , Colorantes/química , Cristalografía por Rayos X , Hemo/química , Compuestos de Hierro/química , Modelos Moleculares , Oxidación-Reducción , Oxígeno/química , Peroxidasa/química , Streptomyces lividans/enzimología
15.
Dalton Trans ; 49(5): 1620-1636, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31942590

RESUMEN

Dye decolourising peroxidases (DyPs) are oxidative haem containing enzymes that can oxidise organic substrates by first reacting with hydrogen peroxide. Herein, we have focused on two DyP homologs, DtpAa and DtpA, from the soil-dwelling bacterium Streptomyces lividans. By using X-ray crystallography, stopped-flow kinetics, deuterium kinetic isotope studies and EPR spectroscopy, we show that both DyPs react with peroxide to form compound I (a FeIV[double bond, length as m-dash]O species and a porphyrin π-cation radical), via a common mechanism, but the reactivity and rate limits that define the mechanism are markedly different between the two homologs (DtpA forms compound I rapidly, no kinetic isotope effect; DtpAa 100-fold slower compound I formation and a distinct kinetic isotope effect). By determining the validated ferric X-ray structure of DtpAa and comparing it with the ferric DtpA structure, we attribute the kinetic differences to a subtle structural repositioning of the distal haem pocket Asp side chain. Through site-directed mutagenesis we show the acid-base catalyst responsible for proton-transfer to form compound I comprises a combination of a water molecule and the distal Asp. Compound I formation in the wild-type enzymes as well as their distal Asp variants is pH dependent, sharing a common ionisation equilibrium with an apparent pKa of ∼4.5-5.0. We attribute this pKa to the deprotonation/protonation of the haem bound H2O2. Our studies therefore reveal a mechanism for compound I formation in which the rate limit may be shifted from peroxide binding to proton-transfer controlled by the distal Asp position and the associated hydrogen-bonded water molecules.


Asunto(s)
Colorantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidasas/metabolismo , Streptomyces lividans/enzimología , Colorantes/química , Cristalografía por Rayos X , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Peroxidasas/química , Peroxidasas/genética
16.
Dalton Trans ; 49(5): 1545-1554, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31930254

RESUMEN

Ferritins are multimers comprised of 4 α-helical bundle monomers that co-assemble to form protein shells surrounding an approximately spherical internal cavity. The assembled multimers acquire Fe2+ from their surroundings by utilising channels that penetrate the protein for the transportation of iron to diiron catalytic centres buried within the monomeric units. Here oxidation of the substrate to Fe3+ is coupled to the reduction of O2 and/or peroxide to yield the precursor to a ferric oxy hydroxide mineral that is stored within the internal cavity. The rhombic dodecahedral quaternary structure results in channels of 4-fold and 3-fold symmetry, located at the vertices, which are common to all 24mer-ferritins. Ferritins isolated from higher eukaryotes have been demonstrated to take up Fe2+via the 3-fold channels. One of the defining features of ferritins isolated from prokaryotes is the presence of a further 24 channels, the B-channels, and these are thought to play an important role in Fe2+ uptake in this sub-family. SynFtn is an unusual ferritin isolated from the marine cyanobacterium Synechococcus CC9311. The reported structure of SynFtn derived from Fe2+ soaked crystals revealed the presence of a fully hydrated Fe2+ associated with three aspartate residues (Asp137 from each of the three symmetry related subunits) within each three-fold channel, suggesting that it might be the route for Fe2+ entry. Here, we present structural and spectro-kinetic data on two variants of SynFtn, D137A and E62A, designed to assess this possibility. Glu62 is equivalent to residues demonstrated to be important in the transfer of iron from the inner exit of the 3-fold channel to the catalytic centre in animal ferritins. As expected replacing Asp137 with a non-coordinating residue eliminated rapid iron oxidation by SynFtn. In contrast the rate of mineral core formation was severely impaired whilst the rate of iron transit into the catalytic centre was largely unaffected upon introducing a non-coordinating residue in place of Glu62 suggesting a role for this residue in release of the oxidised product. The identification of these two residues in SynFtn maps out major routes for Fe2+ entry to, and exit from, the catalytic ferroxidase centres.


Asunto(s)
Ceruloplasmina/metabolismo , Ferritinas/metabolismo , Compuestos Ferrosos/metabolismo , Células Procariotas/metabolismo , Synechococcus/química , Biocatálisis , Dominio Catalítico , Ceruloplasmina/química , Espectroscopía de Resonancia por Spin del Electrón , Ferritinas/química , Ferritinas/aislamiento & purificación , Compuestos Ferrosos/química , Modelos Moleculares , Células Procariotas/química , Synechococcus/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(40): 19911-19916, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527239

RESUMEN

The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.


Asunto(s)
Proteínas CLOCK/química , Elementos E-Box , Hemo/química , Transducción de Señal , Factores de Transcripción ARNTL/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Catálisis , Relojes Circadianos , Criptocromos/química , ADN/química , Electrones , Escherichia coli/metabolismo , Humanos , Ligandos , Proteínas del Tejido Nervioso/química , Oxígeno/química , Proteínas Circadianas Period/química , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Transcripción Genética
18.
Elife ; 82019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31526471

RESUMEN

RirA is a global regulator of iron homeostasis in Rhizobium and related α-proteobacteria. In its [4Fe-4S] cluster-bound form it represses iron uptake by binding to IRO Box sequences upstream of RirA-regulated genes. Under low iron and/or aerobic conditions, [4Fe-4S] RirA undergoes cluster conversion/degradation to apo-RirA, which can no longer bind IRO Box sequences. Here, we apply time-resolved mass spectrometry and electron paramagnetic resonance spectroscopy to determine how the RirA cluster senses iron and O2. The data indicate that the key iron-sensing step is the O2-independent, reversible dissociation of Fe2+ from [4Fe-4S]2+ to form [3Fe-4S]0. The dissociation constant for this process was determined as Kd = ~3 µM, which is consistent with the sensing of 'free' iron in the cytoplasm. O2-sensing occurs through enhanced cluster degradation under aerobic conditions, via O2-mediated oxidation of the [3Fe-4S]0 intermediate to form [3Fe-4S]1+. This work provides a detailed mechanistic/functional view of an iron-responsive regulator.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Oxígeno/metabolismo , Rhizobium/metabolismo , Proteínas Bacterianas/química , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Espectrometría de Masas , Oxidación-Reducción , Proteolisis
19.
Chem Sci ; 10(19): 4985-4993, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31183047

RESUMEN

Nitrous oxide reductase (N2OR) is the terminal enzyme of the denitrification pathway of soil bacteria that reduces the greenhouse gas nitrous oxide (N2O) to dinitrogen. In addition to a binuclear CuA site that functions in electron transfer, the active site of N2OR features a unique tetranuclear copper cluster bridged by inorganic sulfide, termed CuZ. In copper-limited environments, N2OR fails to function, resulting in truncation of denitrification and rising levels of N2O released by cells to the atmosphere, presenting a major environmental challenge. Here we report studies of nosL from Paracoccus denitrificans, which is part of the nos gene cluster, and encodes a putative copper binding protein. A Paracoccus denitrificans ΔnosL mutant strain had no denitrification phenotype under copper-sufficient conditions but failed to reduce N2O under copper-limited conditions. N2OR isolated from ΔnosL cells was found to be deficient in copper and to exhibit attenuated activity. UV-visible absorbance spectroscopy revealed that bands due to the CuA center were unaffected, while those corresponding to the CuZ center were significantly reduced in intensity. In vitro studies of a soluble form of NosL without its predicted membrane anchor showed that it binds one Cu(i) ion per protein with attomolar affinity, but does not bind Cu(ii). Together, the data demonstrate that NosL is a copper-binding protein specifically required for assembly of the CuZ center of N2OR, and thus represents the first characterised assembly factor for the CuZ active site of this key environmental enzyme, which is globally responsible for the destruction of a potent greenhouse gas.

20.
Chemistry ; 25(24): 6141-6153, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30945782

RESUMEN

Dye decolouring peroxidases (DyPs) are the most recent class of heme peroxidase to be discovered. On reacting with H2 O2 , DyPs form a high-valent iron(IV)-oxo species and a porphyrin radical (Compound I) followed by stepwise oxidation of an organic substrate. In the absence of substrate, the ferryl species decays to form transient protein-bound radicals on redox active amino acids. Identification of radical sites in DyPs has implications for their oxidative mechanism with substrate. Using a DyP from Streptomyces lividans, referred to as DtpA, which displays low reactivity towards synthetic dyes, activation with H2 O2 was explored. A Compound I EPR spectrum was detected, which in the absence of substrate decays to a protein-bound radical EPR signal. Using a newly developed version of the Tyrosyl Radical Spectra Simulation Algorithm, the radical EPR signal was shown to arise from a pristine tyrosyl radical and not a mixed Trp/Tyr radical that has been widely reported in DyP members exhibiting high activity with synthetic dyes. The radical site was identified as Tyr374, with kinetic studies inferring that although Tyr374 is not on the electron-transfer pathway from the dye RB19, its replacement with a Phe does severely compromise activity with other organic substrates. These findings hint at the possibility that alternative electron-transfer pathways for substrate oxidation are operative within the DyP family. In this context, a role for a highly conserved aromatic dyad motif is discussed.


Asunto(s)
Colorantes/química , Radicales Libres/química , Peroxidasas/química , Algoritmos , Secuencias de Aminoácidos , Biocatálisis , Simulación por Computador , Cinética , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Streptomyces lividans/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...