Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(15): 10621-10631, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38584362

RESUMEN

Lysine dimethylation (Kme2) is a crucial post-translational modification (PTM) that regulates biological processes and is implicated in diseases. There is significant interest in globally identifying these methylation marks. Unfortunately, this remains challenging due to the lack of robust technologies for selectively labeling Kme2. To address this, we present a chemical method named tertiary amine coupling by oxidation (TACO). This method selectively modifies Kme2 to aldehydes using Selectfluor and a base. The resulting aldehydes from Kme2 were then functionalized using reductive amination, thiolamine, and oxime chemistry. We successfully demonstrated the versatility of TACO in selectively labeling Kme2 peptides and proteins in complex cell lysate mixtures with varying payloads, including affinity tags and fluorophores. We further showed the application of TACO chemistry for the identification of Kme2 sites at a single-molecule level by fluorosequencing. We discovered novel 30 Kme2 sites, in addition to previously known 5 Kme2 sites, by proteomics analysis of TACO-modified nuclear extracts. Our work establishes a unique strategy for covalently modifying Kme2, facilitating the global identification of low-abundance Kme2-PTMs and their sites within complex cell lysate mixtures.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Lisina/química , Proteínas/química , Aminas , Aldehídos
2.
bioRxiv ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37745461

RESUMEN

The need to accurately survey proteins and their modifications with ever higher sensitivities, particularly in clinical settings with limited samples, is spurring development of new single molecule proteomics technologies. Fluorosequencing is one such highly parallelized single molecule peptide sequencing platform, based on determining the sequence positions of select amino acid types within peptides to enable their identification and quantification from a reference database. Here, we describe substantial improvements to fluorosequencing, including identifying fluorophores compatible with the sequencing chemistry, mitigating dye-dye interactions through the use of extended polyproline linkers, and developing an end-to-end workflow for sample preparation and sequencing. We demonstrate by fluorosequencing peptides in mixtures and identifying a target neoantigen from a database of decoy MHC peptides, highlighting the potential of the technology for high sensitivity clinical applications.

3.
Bioconjug Chem ; 33(6): 1156-1165, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35622964

RESUMEN

A peptide sequencing scheme utilizing fluorescence microscopy and Edman degradation to determine the amino acid position in fluorophore-labeled peptides was recently reported, referred to as fluorosequencing. It was observed that multiple fluorophores covalently linked to a peptide scaffold resulted in a decrease in the anticipated fluorescence output and worsened the single-molecule fluorescence analysis. In this study, we report an improvement in the photophysical properties of fluorophore-labeled peptides by incorporating long and flexible (PEG)10 linkers at the peptide attachment points. Long linkers to the fluorophores were installed using copper-catalyzed azide-alkyne cycloaddition conditions. The photophysical properties of these peptides were analyzed in solution and immobilized on a microscope slide at the single-molecule level under peptide fluorosequencing conditions. Solution-phase fluorescence analysis showed improvements in both quantum yield and fluorescence lifetime with the long linkers. While on the solid support, photometry measurements showed significant increases in fluorescence brightness and 20 to 60% improvements in the ability to determine the amino acid position with fluorosequencing. This spatial distancing strategy demonstrates improvements in the peptide sequencing platform and provides a general approach for improving the photophysical properties in fluorophore-labeled macromolecules.


Asunto(s)
Colorantes Fluorescentes , Xantenos , Aminoácidos , Azidas/química , Colorantes Fluorescentes/química , Ionóforos , Péptidos
4.
Langmuir ; 37(51): 14856-14865, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34904833

RESUMEN

Silica passivating agents have shown great success in minimizing nonspecific protein binding to glass surfaces for imaging and microscopy applications. Amine-derivatized surfaces are commonly used in conjugation with amide coupling agents to immobilize peptides/proteins through C-terminal or side-chain carboxylic acids. In the case of the single-molecule fluorosequencing of peptides, attachment occurs via the C-terminus and nonspecific surface binding has previously been a source of error in peptide identification. Here, we employ fluorosequencing as a high-throughput, single-molecule sensitivity assay to identify and quantify the extent of nonspecific binding of peptides to amine-derivatized surfaces. We show that there is little improvement when using common passivating agents in combination with the surface derivatizing agent 3-aminopropyl-triethoxysilane (APTES) to couple the peptides to the modified surface. Furthermore, many xanthene fluorophores have carboxylic acids in the appended phenyl ring at positions ortho and meta or ortho and para, and the literature shows that conjugation through the ortho position is not favored. Because xanthene-derived fluorophores are commonly used for single-molecule applications, we devised a novel assay to probe the conjugation of peptides via their fluorophores relative to their C-termini on silane-derivatized surfaces. We find significant attachment to the ortho position, which is a warning to those attempting to immobilize fluorophore-labeled peptides to silica surfaces via amide coupling agents. However, eliminating all amines on the surface by switching to 3-azidopropyl-triethoxysilane (AzTES) for coupling via copper-catalyzed azide-alkyne cycloaddition (CuAAC) and omitting additional passivation agents allowed us to achieve a high level of C-terminally bound peptides relative to nonspecifically or ortho-phenyl-bound, fluorophore-labeled peptides. This strategy substantially improves the specificity of peptide immobilization for single-molecule fluorosequencing experiments.


Asunto(s)
Azidas , Péptidos , Alquinos , Reacción de Cicloadición , Proteínas
5.
ACS Chem Biol ; 16(11): 2595-2603, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34734691

RESUMEN

Methods for the selective labeling of biogenic functional groups on peptides are being developed and used in the workflow of both current and emerging proteomics technologies, such as single-molecule fluorosequencing. To achieve successful labeling with any one method requires that the peptide fragments contain the functional group for which labeling chemistry is designed. In practice, only two functional groups are present in every peptide fragment regardless of the protein cleavage site, namely, an N-terminal amine and a C-terminal carboxylic acid. Developing a global-labeling technology, therefore, requires one to specifically target the N- and/or C-terminus of peptides. In this work, we showcase the first successful application of photocatalyzed C-terminal decarboxylative alkylation for peptide mass spectrometry and single-molecule protein sequencing that can be broadly applied to any proteome. We demonstrate that peptides in complex mixtures generated from enzymatic digests from bovine serum albumin, as well as protein mixtures from yeast and human cell extracts, can be site-specifically labeled at their C-terminal residue with a Michael acceptor. Using two distinct analytical approaches, we characterize C-terminal labeling efficiencies of greater than 50% across complete proteomes and document the proclivity of various C-terminal amino-acid residues for decarboxylative labeling, showing histidine and tryptophan to be the most disfavored. Finally, we combine C-terminal decarboxylative labeling with an orthogonal carboxylic acid-labeling technology in tandem to establish a new platform for fluorosequencing.


Asunto(s)
Péptidos/química , Proteómica/métodos , Imagen Individual de Molécula/métodos , Alquilación , Aminoácidos/química , Angiotensinas/química , Catálisis , Descarboxilación , Humanos , Oxidación-Reducción , Procesos Fotoquímicos
6.
ACS Chem Biol ; 15(6): 1401-1407, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32363853

RESUMEN

The field of proteomics has expanded recently with more sensitive techniques for the bulk measurement of peptides as well as single-molecule techniques. One limiting factor for some of these methods is the need for multiple chemical derivatizations and highly pure proteins free of contaminants. We demonstrate a solid-phase capture-release strategy suitable for the proteolysis, purification, and subsequent chemical modification of peptides. We use this resin on an HEK293T cell lysate and perform one-pot proteolysis, capture, and derivatization to survey peptide capture biases from over 40 000 unique peptides from a cellular proteome. We also show that this capture can be reversed in a traceless manner, such that it is amenable for single-molecule proteomics techniques. With this technique, we perform a fluorescent labeling and C-terminal derivatization on a peptide and subject it to fluorosequencing, demonstrating that washing the resin is sufficient to remove excess dyes and other reagents prior to single-molecule protein sequencing.


Asunto(s)
Péptidos/aislamiento & purificación , Proteómica/métodos , Extracción en Fase Sólida/métodos , Aldehídos/química , Secuencia de Aminoácidos , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Péptidos/análisis , Proteolisis , Proteoma/análisis , Proteoma/aislamiento & purificación , Análisis de Secuencia de Proteína/métodos
7.
Nat Biotechnol ; 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30346938

RESUMEN

The identification and quantification of proteins lags behind DNA-sequencing methods in scale, sensitivity, and dynamic range. Here, we show that sparse amino acid-sequence information can be obtained for individual protein molecules for thousands to millions of molecules in parallel. We demonstrate selective fluorescence labeling of cysteine and lysine residues in peptide samples, immobilization of labeled peptides on a glass surface, and imaging by total internal reflection microscopy to monitor decreases in each molecule's fluorescence after consecutive rounds of Edman degradation. The obtained sparse fluorescent sequence of each molecule was then assigned to its parent protein in a reference database. We tested the method on synthetic and naturally derived peptide molecules in zeptomole-scale quantities. We also fluorescently labeled phosphoserines and achieved single-molecule positional readout of the phosphorylated sites. We measured >93% efficiencies for dye labeling, survival, and cleavage; further improvements should enable studies of increasingly complex proteomic mixtures, with the high sensitivity and digital quantification offered by single-molecule sequencing.

8.
New J Chem ; 41(2): 462-469, 2017 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-28983186

RESUMEN

Single-molecule protein sequencing is regarded as a promising new method in the field of proteomics. It potentially offers orders of magnitude improvements in sensitivitiy and throughput for protein detection when compared to mass spectrometry. However, the development of such a technology faces significant barriers, especially in the need to chemically derivatize specific amino-acid types with unique labels. For example, fluorescent dyes would be suitable for single-molecule microscopy or nanopore-based sequencing. These emerging single-molecule protein-sequencing technologies suggests a need to develop an amino acid side chain-selective modification scheme that could target several side chains of interest. Current work for modifying residues focuses mainly on one or two side chains. The need to label many side chains, as recent computational modeling suggests, is required for high protein, sequencing coverage of the human proteome. Herein, we report our stragety for modifying two model peptides KYDWEC and KDYWE containing the most reactive residues, using highly opitmized mass labels in a sequential and selective fashion both using solution-phase and solid-phase chemistries, respectively. This will serve as a step towards a modification scheme appropriate for single-molecule studies.

9.
PLoS Comput Biol ; 11(2): e1004080, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25714988

RESUMEN

The proteomes of cells, tissues, and organisms reflect active cellular processes and change continuously in response to intracellular and extracellular cues. Deep, quantitative profiling of the proteome, especially if combined with mRNA and metabolite measurements, should provide an unprecedented view of cell state, better revealing functions and interactions of cell components. Molecular diagnostics and biomarker discovery should benefit particularly from the accurate quantification of proteomes, since complex diseases like cancer change protein abundances and modifications. Currently, shotgun mass spectrometry is the primary technology for high-throughput protein identification and quantification; while powerful, it lacks high sensitivity and coverage. We draw parallels with next-generation DNA sequencing and propose a strategy, termed fluorosequencing, for sequencing peptides in a complex protein sample at the level of single molecules. In the proposed approach, millions of individual fluorescently labeled peptides are visualized in parallel, monitoring changing patterns of fluorescence intensity as N-terminal amino acids are sequentially removed, and using the resulting fluorescence signatures (fluorosequences) to uniquely identify individual peptides. We introduce a theoretical foundation for fluorosequencing and, by using Monte Carlo computer simulations, we explore its feasibility, anticipate the most likely experimental errors, quantify their potential impact, and discuss the broad potential utility offered by a high-throughput peptide sequencing technology.


Asunto(s)
Péptidos/análisis , Péptidos/química , Análisis de Secuencia de Proteína/métodos , Aminoácidos/análisis , Aminoácidos/química , Aminoácidos/metabolismo , Biología Computacional , Simulación por Computador , Bases de Datos de Proteínas , Colorantes Fluorescentes
10.
Dalton Trans ; 44(6): 2667-75, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25512085

RESUMEN

Chromophores that incorporate f-block elements have considerable potential for use in bioimaging applications because of their advantageous photophysical properties compared to organic dye, which are currently widely used. We are developing new classes of lanthanide-based self-assembling molecular nanoparticles as reporters for imaging and as multi-functional nanoprobes or nanosensors for use with biological samples. One class of these materials, which we call lanthanide "nano-drums", are homogeneous 4d-4f clusters approximately 25 to 30 Å in diameter. These are capable of emitting from the visible to near-infrared wavelengths. Here, we present the synthesis, crystal structure, photophysical properties and comparative cytotoxicity data for a 32 metal Eu-Cd nano-drum [Eu(8)Cd(24)L(12)(OAc)(48)] (1). We also explored the imaging capabilities of this nano-drum using epifluorescence, TIRF, and two-photon microscopy platforms.


Asunto(s)
Elementos de la Serie de los Lantanoides/química , Nanopartículas/química , Imagen Óptica , Compuestos Organometálicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Relación Estructura-Actividad
11.
Faraday Discuss ; 175: 241-55, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25284181

RESUMEN

We are developing a new class of lanthanide-based self-assembling molecular nanoparticles as potential reporter molecules for imaging, and as multi-functional nanoprobes or nanosensors in diagnostic systems. These lanthanide "nano-drums" are homogeneous 4d-4f clusters approximately 25 to 30 Å in diameter that can emit from the visible to near-infrared (NIR) wavelengths. Here, we present syntheses, crystal structures, photophysical properties, and comparative cytotoxicity data for six nano-drums containing either Eu, Tb, Lu, Er, Yb or Ho. Imaging capabilities of these nano-drums are demonstrated using epifluorescence, total internal reflection fluorescence (TIRF), and two-photon microscopy. We discuss how these molecular nanoparticles can to be adapted for a range of assays, particularly by taking advantage of functionalization strategies with chemical moieties to enable conjugation to protein or nucleic acids.


Asunto(s)
Antineoplásicos/farmacología , Elementos de la Serie de los Lantanoides/química , Nanopartículas del Metal/química , Compuestos Organometálicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Investigación Biomédica , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Estructura Molecular , Nanomedicina , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Relación Estructura-Actividad
12.
Anal Chem ; 86(13): 6237-44, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24897623

RESUMEN

We report a fast and highly efficient diazonium reaction that couples a nitroazobenzene chromophore to tyrosine and histidine residues, thus endowing peptides with high photoabsorption cross sections at 351 nm in the gas phase. Only the tagged peptides undergo ultraviolet photodissociation (UVPD) at 351 nm, as demonstrated for several Tyr- and His-containing peptides from protein digests. Additional selectivity is achieved by the integration of the UVPD-MS method with an in silico database search restricted to Tyr- and His-containing peptides. A modified MassMatrix algorithm condenses analysis by filtering the input database file to include Tyr/His-containing peptides only, thus reducing the search space and increasing confidence. In summary, derivatization of specific amino acid residues in conjunction with selective activation of the derivatized peptides provides a streamlined approach to shotgun proteomics.


Asunto(s)
Colorantes/química , Histidina/química , Péptidos/química , Proteínas/química , Tirosina/química , Secuencia de Aminoácidos , Animales , Compuestos Azo/química , Compuestos de Diazonio/química , Humanos , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Nitrobencenos/química , Procesos Fotoquímicos , Rayos Ultravioleta
13.
PLoS One ; 8(2): e56203, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405267

RESUMEN

It has been hypothesized that components of enzymatic pathways might organize into intracellular assemblies to improve their catalytic efficiency or lead to coordinate regulation. Accordingly, de novo purine biosynthesis enzymes may form a purinosome in the absence of purines, and a punctate intracellular body has been identified as the purinosome. We investigated the mechanism by which human de novo purine biosynthetic enzymes might be organized into purinosomes, especially under differing cellular conditions. Irregardless of the activity of bodies formed by endogenous enzymes, we demonstrate that intracellular bodies formed by transiently transfected, fluorescently tagged human purine biosynthesis proteins are best explained as protein aggregation.


Asunto(s)
Vías Biosintéticas/fisiología , Gránulos Citoplasmáticos/metabolismo , Complejos Multienzimáticos/metabolismo , Purinas/biosíntesis , Proteínas Recombinantes/metabolismo , Estrés Fisiológico/fisiología , Western Blotting , Catálisis , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Complejos Multienzimáticos/genética , Plásmidos/genética , Multimerización de Proteína , Proteínas Recombinantes/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA