Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36290685

RESUMEN

Phenol-rich foods consumption such as virgin olive oil (VOO) has been shown to have beneficial effects on cardiovascular diseases. The broader biochemical impact of VOO and phenol-enriched OOs remains, however, unclear. A randomized, double-blind, cross-over, controlled trial was performed with thirty-three hypercholesterolemic individuals who ingested for 3-weeks (25 mL/day): (1) an OO enriched with its own olive oil phenolic compounds (PCs) (500 ppm; FOO); (2) an OO enriched with its own olive oil PCs (250 ppm) plus thyme PCs (250 ppm; FOOT); and (3) a VOO with low phenolic content (80 ppm). Serum lipid and glycemic profiles, serum 1H-NMR spectroscopy-based metabolomics, endothelial function, blood pressure, and cardiovascular risk were measured. We combined OPLS-DA with machine learning modelling to identify metabolites discrimination of the treatment groups. Both phenol-enriched OO interventions decreased the levels of glutamine, creatinine, creatine, dimethylamine, and histidine in comparison to VOO one. In addition, FOOT decreased the plasma levels of glycine and DMSO2 compared to VOO, while FOO decreased the circulating alanine concentrations but increased the plasma levels of acetone and 3-HB compared to VOO. Based on these findings, phenol-enriched OOs were shown to result in a favorable shift in the circulating metabolic phenotype, inducing a reduction in metabolites associated with cardiometabolic diseases.

2.
Gut ; 69(12): 2122-2130, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165408

RESUMEN

OBJECTIVE: Development of obesity and type 2 diabetes (T2D) are associated with gut microbiota (GM) changes. The gut viral community is predominated by bacteriophages (phages), which are viruses that attack bacteria in a host-specific manner. The antagonistic behaviour of phages has the potential to alter the GM. As a proof-of-concept, we demonstrate the efficacy of faecal virome transplantation (FVT) from lean donors for shifting the phenotype of obese mice into closer resemblance of lean mice. DESIGN: The FVT consisted of viromes with distinct profiles extracted from the caecal content of mice from different vendors that were fed a low-fat (LF) diet for 14 weeks. Male C57BL/6NTac mice were divided into five groups: LF (as diet control), high-fat (HF) diet, HF+ampicillin (Amp), HF+Amp+FVT and HF+FVT. At weeks 6 and 7 of the study, the HF+FVT and HF+Amp+FVT mice were treated with FVT by oral gavage. The Amp groups were treated with Amp 24 hours prior to first FVT treatment. RESULTS: Six weeks after first FVT, the HF+FVT mice showed a significant decrease in weight gain compared with the HF group. Further, glucose tolerance was comparable between the LF and HF+FVT mice, while the other HF groups all had impaired glucose tolerance. These observations were supported by significant shifts in GM composition, blood plasma metabolome and expression levels of genes associated with obesity and T2D development. CONCLUSIONS: Transfer of caecal viral communities from mice with a lean phenotype into mice with an obese phenotype led to reduced weight gain and normalised blood glucose parameters relative to lean mice. We hypothesise that this effect is mediated via FVT-induced GM changes.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Trasplante de Microbiota Fecal , Obesidad/terapia , Viroma , Animales , Glucemia/análisis , Diabetes Mellitus Experimental/terapia , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Expresión Génica , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas Klotho , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaboloma , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Prueba de Estudio Conceptual , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Aumento de Peso
3.
PLoS One ; 13(3): e0192092, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29499047

RESUMEN

BACKGROUND: Environmental enteric dysfunction (EED) is widespread throughout the tropics and in children is associated with stunting and other adverse health outcomes. One of the hallmarks of EED is villus damage. In children with severe acute malnutrition (SAM) the severity of enteropathy is greater and short term mortality is high, but the metabolic consequences of enteropathy are unknown. Here, we characterize the urinary metabolic alterations associated with villus health, classic enteropathy biomarkers and anthropometric measurements in severely malnourished children in Zambia. METHODS/PRINCIPAL FINDINGS: We analysed 20 hospitalised children with acute malnutrition aged 6 to 23 months in Zambia. Small intestinal biopsies were assessed histologically (n = 15), anthropometric and gut function measurements were collected and the metabolic phenotypes were characterized by 1H nuclear magnetic resonance (NMR) spectroscopy. Endoscopy could not be performed on community controls children. Growth parameters were inversely correlated with enteropathy biomarkers (p = 0.011) and parameters of villus health were inversely correlated with translocation and permeability biomarkers (p = 0.000 and p = 0.015). Shorter villus height was associated with reduced abundance of metabolites related to gut microbial metabolism, energy and muscle metabolism (p = 0.034). Villus blunting was also related to increased sucrose excretion (p = 0.013). CONCLUSIONS/SIGNIFICANCE: Intestinal villus blunting is associated with several metabolic perturbations in hospitalized children with severe undernutrition. Such alterations include altered muscle metabolism, reinforcing the link between EED and growth faltering, and a disruption in the biochemical exchange between the gut microbiota and host. These findings extend our understanding on the downstream consequences of villus blunting and provide novel non-invasive biomarkers of enteropathy dysfunction. The major limitations of this study are the lack of comparative control group and gut microbiota characterization.


Asunto(s)
Diarrea/patología , Trastornos de la Nutrición del Lactante/patología , Enfermedades Intestinales/patología , Mucosa Intestinal/patología , Desnutrición Aguda Severa/patología , Diarrea/complicaciones , Femenino , Microbioma Gastrointestinal , Trastornos del Crecimiento/sangre , Trastornos del Crecimiento/complicaciones , Trastornos del Crecimiento/patología , Humanos , Lactante , Trastornos de la Nutrición del Lactante/complicaciones , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Enfermedades Intestinales/complicaciones , Enfermedades Intestinales/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Fenotipo , Desnutrición Aguda Severa/complicaciones , Zambia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...