Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Am J Physiol Endocrinol Metab ; 324(6): E514-E530, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126848

RESUMEN

Elevated serum concentrations of glucocorticoids (GCs) result in excessive lipid accumulation in white adipose tissue (WAT) as well as dysfunction of thermogenic brown adipose tissue (BAT), ultimately leading to the development of obesity and metabolic disease. Here, we hypothesized that activation of the sympathetic nervous system either via cold exposure or the use of a selective ß3-adrenergic receptor (ß3-AR) agonist alleviates the adverse metabolic effects of chronic GC exposure in rodents. To this end, male 10-wk-old C57BL/6NRj mice were treated with corticosterone via drinking water or placebo for 4 wk while being maintained at 29°C (thermoneutrality), 22°C (room temperature), or 13°C (cold temperature); in a follow-up study mice received a selective ß3-AR agonist or placebo with and without corticosterone while being maintained at room temperature. Body weight and food intake were monitored throughout the study. Histological and molecular analyses were performed on white and brown adipose depots. Cold exposure not only preserved the thermogenic function of brown adipose tissue but also reversed GC-induced lipid accumulation in white adipose tissue and corrected GC-driven obesity, hyperinsulinemia, and hyperglycemia. The metabolic benefits of cold exposure were associated with enhanced sympathetic activity in adipose tissue, thus potentially linking an increase in sympathetic signaling to the observed metabolic benefits. In line with this concept, chronic administration of a selective ß3-AR agonist reproduced the beneficial metabolic effects of cold adaption during exposure to exogenous GCs. This preclinical study demonstrates the potential of ß3-AR as a therapeutic target in the management and prevention of GC-induced metabolic disease.NEW & NOTEWORTHY This preclinical study in mice shows that the ß3-adrenergic receptor can be a potential therapeutic approach to counteracting glucocorticoid (GC)-induced obesity and metabolic dysfunction. Both cold acclimation and ß3-adrenergic receptor stimulation in a mouse model of excess glucocorticoids were adequate in not only preventing obesity, adiposity, and adipose tissue dysfunction but also correcting hyperinsulinemia, hyperleptinemia, and dyslipidemia.


Asunto(s)
Glucocorticoides , Receptores Adrenérgicos beta , Masculino , Animales , Ratones , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Receptores Adrenérgicos beta/metabolismo , Corticosterona/metabolismo , Estudios de Seguimiento , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo , Obesidad/inducido químicamente , Obesidad/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Lípidos , Termogénesis
3.
Endocrinol Diabetes Metab ; 6(1): e392, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36480511

RESUMEN

INTRODUCTION: The incretin hormone glucagon-like peptide-1 (GLP-1) slows gastric emptying, increases satiety and enhances insulin secretion. GLP-1 receptor agonists, such as liraglutide, are used therapeutically in humans to improve glycaemic control and delay the onset of type 2 diabetes mellitus (T2DM). In UCD-T2DM rats, a model of polygenic obesity and insulin resistance, we have previously reported that daily liraglutide administration delayed diabetes onset by >4 months. Growth hormone (GH) may exert anti-diabetic effects, including increasing ß-cell mass and insulin secretion, while disrupting GH signalling in mice reduces both the size and number of pancreatic islets. We therefore hypothesized that GH supplementation would augment liraglutide's anti-diabetic effects. METHODS: Male UCD-T2DM rats were treated daily with GH (0.3 mg/kg) and/or liraglutide (0.2 mg/kg) from 2 months of age. Control (vehicle) and food-restricted (with food intake matched to liraglutide-treated rats) groups were also studied. The effects of treatment on diabetes onset and weight gain were assessed, as well as measures of glucose tolerance, lipids and islet morphology. RESULTS: Liraglutide treatment significantly reduced food intake and body weight and improved glucose tolerance and insulin sensitivity, relative to controls. After 4.5 months, none of the liraglutide-treated rats had developed T2DM (overall p = .019). Liraglutide-treated rats also displayed lower fasting triglyceride (TG) concentrations and lower hepatic TG content, compared to control rats. Islet morphology was improved in liraglutide-treated rats, with significantly increased pancreatic insulin content (p < .05 vs. controls). Although GH treatment tended to increase body weight (and gastrocnemius muscle weight), there were no obvious effects on diabetes onset or other diabetes-related outcomes. CONCLUSION: GH supplementation did not augment the anti-diabetic effects of liraglutide.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Masculino , Ratas , Animales , Ratones , Liraglutida/farmacología , Liraglutida/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Aumento de Peso , Glucosa , Hormona del Crecimiento
4.
Sci Rep ; 12(1): 776, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031684

RESUMEN

Beige and brown fat consume glucose and lipids to produce heat, using uncoupling protein 1 (UCP1). It is thought that full activation of brown adipose tissue (BAT) may increase total daily energy expenditure by 20%. Humans normally have more beige and potentially beige-able fat than brown fat. Strategies to increase beige fat differentiation and activation may be useful for the treatment of obesity and diabetes. Mice were fed chow or high-fat diet (HFD) with or without the iron chelator deferasirox. Animals fed HFD + deferasirox were markedly lighter than their HFD controls with increased energy expenditure (12% increase over 24 h, p < 0.001). Inguinal fat from HFD + deferasirox mice showed increased beige fat quantity with greater Ucp1 and Prdm16 expression. Inguinal adipose tissue explants were studied in a Seahorse bioanalyser and energy expenditure was significantly increased. Deferasirox was also effective in established obesity and in ob/ob mice, indicating that intact leptin signalling is not needed for efficacy. These studies identify iron chelation as a strategy to preferentially activate beige fat. Whether activating brown/beige fat is effective in humans is unproven. However, depleting iron to low-normal levels is a potential therapeutic strategy to improve obesity and related metabolic disorders, and human studies may be warranted.


Asunto(s)
Tejido Adiposo Beige/citología , Tejido Adiposo Beige/metabolismo , Diferenciación Celular/efectos de los fármacos , Deferasirox/farmacología , Quelantes del Hierro/farmacología , Obesidad/tratamiento farmacológico , Obesidad/prevención & control , Animales , Deferasirox/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Humanos , Quelantes del Hierro/uso terapéutico , Metabolismo de los Lípidos , Ratones , Obesidad/etiología , Obesidad/metabolismo , Termogénesis , Proteína Desacopladora 1/metabolismo
5.
Bone Res ; 9(1): 40, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34465731

RESUMEN

Chronic high-fat diet (HFD) consumption not only promotes obesity and insulin resistance, but also causes bone loss through mechanisms that are not well understood. Here, we fed wild-type CD-1 mice either chow or a HFD (43% of energy from fat) for 18 weeks; HFD-fed mice exhibited decreased trabecular volume (-28%) and cortical thickness (-14%) compared to chow-fed mice. In HFD-fed mice, bone loss was due to reduced bone formation and mineral apposition, without obvious effects on bone resorption. HFD feeding also increased skeletal expression of sclerostin and caused deterioration of the osteocyte lacunocanalicular network (LCN). In mice fed HFD, skeletal glucocorticoid signaling was activated relative to chow-fed mice, independent of serum corticosterone concentrations. We therefore examined whether skeletal glucocorticoid signaling was necessary for HFD-induced bone loss, using transgenic mice lacking glucocorticoid signaling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice). In HSD2OB/OCY-tg mice, bone formation and mineral apposition rates were not suppressed by HFD, and bone loss was significantly attenuated. Interestingly, in HSD2OB/OCY-tg mice fed HFD, both Wnt signaling (less sclerostin induction, increased ß-catenin expression) and glucose uptake were significantly increased, relative to diet- and genotype-matched controls. The osteocyte LCN remained intact in HFD-fed HSD2OB/OCY-tg mice. When fed a HFD, HSD2OB/OCY-tg mice also increased their energy expenditure and were protected against obesity, insulin resistance, and dyslipidemia. Therefore, glucocorticoid signaling in osteoblasts and osteocytes contributes to the suppression of bone formation in HFD-fed mice. Skeletal glucocorticoid signaling is also an important determinant of glucose uptake in bone, which influences the whole-body metabolic response to HFD.

6.
Eur J Endocrinol ; 185(5): R113-R129, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34478405

RESUMEN

Glucocorticoids regulate a remarkable variety of essential functions, including development, immunomodulation, maintenance of circadian rhythm and the response to stress. Glucocorticoids acutely increase energy availability; this is accomplished not only by mobilizing energy stores but also by diverting energy away from anabolic processes in tissues such as skeletal muscle and bone. While this metabolic shift is advantageous in the short term, prolonged glucocorticoid exposure frequently results in central obesity, insulin resistance, hyperglycaemia, dyslipidaemia, muscle wasting and osteoporosis. Understanding how glucocorticoids affect nutrient partitioning is, therefore, critical for preventing the side effects of glucocorticoid treatment. Independently of circulating glucocorticoids, intracellular glucocorticoid activity is regulated by the 11ß-hydroxysteroid dehydrogenases 1 and 2 (HSD11B1 and 2), which activate and inactivate glucocorticoids, respectively. Excessive HSD11B1 activity and amplification of local glucocorticoid activity in tissues such as adipose tissue and bone may contribute to visceral obesity, insulin resistance and ageing-related bone loss in humans. Several recent findings in animals have considerably expanded our understanding of how glucocorticoids exert their dysmetabolic effects. In mice, disrupting glucocorticoid signalling in either adipose tissue or bone produces marked effects on energy homeostasis. Glucocorticoids have also been shown to influence brown adipose tissue thermogenesis (acute activation, chronic suppression), in both rodents and humans. Lastly, recent studies in mice have demonstrated that many dysmetabolic effects of glucocorticoids are sexually dimorphic, although corresponding results in humans are lacking. Together, these studies have illuminated mechanisms by which glucocorticoids exert their metabolic effects and have guided us towards more targeted future treatments for metabolic diseases.


Asunto(s)
Glucocorticoides/farmacología , Metabolismo/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Glucocorticoides/fisiología , Humanos , Enfermedades Metabólicas/metabolismo
7.
Mol Metab ; 42: 101098, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33045434

RESUMEN

OBJECTIVE: Aging and chronic glucocorticoid excess share a number of critical features, including the development of central obesity, insulin resistance and osteoporosis. Previous studies have shown that skeletal glucocorticoid signalling increases with aging and that osteoblasts mediate the detrimental skeletal and metabolic effects of chronic glucocorticoid excess. Here, we investigated whether endogenous glucocorticoid action in the skeleton contributes to metabolic dysfunction during normal aging. METHODS: Mice lacking glucocorticoid signalling in osteoblasts and osteocytes (HSD2OB/OCY-tg mice) and their wild-type littermates were studied until 3, 6, 12 and 18 months of age. Body composition, adipose tissue morphology, skeletal gene expression and glucose/insulin tolerance were assessed at each timepoint. Leptin sensitivity was assessed by arcuate nucleus STAT3 phosphorylation and inhibition of feeding following leptin administration. Tissue-specific glucose uptake and adipose tissue oxygen consumption rate were also measured. RESULTS: As they aged, wild-type mice became obese and insulin-resistant. In contrast, HSD2OB/OCY-tg mice remained lean and insulin-sensitive during aging. Obesity in wild-type mice was due to leptin resistance, evidenced by an impaired ability of exogenous leptin to suppress food intake and phosphorylate hypothalamic STAT3, from 6 months of age onwards. In contrast, HSD2OB/OCY-tg mice remained leptin-sensitive throughout the study. Compared to HSD2OB/OCY-tg mice, leptin-resistant wild-type mice displayed attenuated sympathetic outflow, with reduced tyrosine hydroxylase expression in both the hypothalamus and thermogenic adipose tissues. Adipose tissue oxygen consumption rate declined progressively in aging wild-type mice but was maintained in HSD2OB/OCY-tg mice. At 18 months of age, adipose tissue glucose uptake was increased 3.7-fold in HSD2OB/OCY-tg mice, compared to wild-type mice. CONCLUSIONS: Skeletal glucocorticoid signalling is critical for the development of leptin resistance, obesity and insulin resistance during aging. These findings underscore the skeleton's importance in the regulation of body weight and implicate osteoblastic/osteocytic glucocorticoid signalling in the aetiology of aging-related obesity and metabolic disease.


Asunto(s)
Envejecimiento/metabolismo , Glucocorticoides/metabolismo , Leptina/metabolismo , Tejido Adiposo/metabolismo , Factores de Edad , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Composición Corporal , Peso Corporal/fisiología , Huesos/metabolismo , Encéfalo/metabolismo , Femenino , Glucosa/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/metabolismo , Obesidad/fisiopatología , Transducción de Señal/efectos de los fármacos , Termogénesis
8.
PLoS One ; 14(12): e0225332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31800592

RESUMEN

BACKGROUND AND AIM: Non-alcoholic steatohepatitis (NASH) is predicted to become the most common cause of cirrhosis and liver failure. Risk factors include obesity, insulin resistance and diabetes. Macrophages and other myeloid cells play crucial roles in initiating and driving inflammation. Aryl hydrocarbon Receptor Nuclear Translocator (ARNT) is a transcription factor which binds to a range of partners to mediate responses to environmental signals, including the diet. In people with diabetes it is decreased in liver. We hypothesised that myeloid cell ARNT activity may contribute to the development of liver pathology. METHODS: Floxed-ARNT mice were bred with LysM-Cre mice to generate mice with reduced ARNT in myeloid cells. Animals were fed a high fat diet (HFD) and liver pathology was assessed. Histology, mRNA, fat accumulation and metabolism were studied. RESULTS: Animals with reduced myeloid ARNT developed steatohepatitis on a HFD, with additional alterations of metabolism and fat deposition. Steatohepatitis was accompanied by hepatic macrophage infiltration and expression of both M1 and M2 markers. Expression of mRNAs for Cxcl1, Mcp-1, Tnf-α and Tgf-ß1 were increased. Human livers from controls and people with NASH were tested; ARNT mRNA was decreased by 80% (p = 0.0004). CONCLUSIONS: Decreased myeloid ARNT may play a role in the conversion from non-alcoholic fatty liver to steatohepatitis. Increasing ARNT may be a therapeutic strategy to reduce NASH.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Células Mieloides/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Adulto , Animales , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Eliminación de Gen , Humanos , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
PLoS One ; 14(11): e0223987, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31751350

RESUMEN

Energy consuming, heat-producing beige adipocytes, located in classic white adipose tissue (WAT), hold promise for the treatment of obesity. Few reports have quantitatively assessed the contribution of browned 'WAT' to energy expenditure. There is a need for methods to examine beige-fat thermogenesis, independently of classical brown fat. The aim of this study is to optimize an inducible lentiviral shRNA to conditionally knock-down Ucp1 and assess the effects on 'browned' WAT. Primary adipocytes from mouse inguinal WAT converted into thermogenic adipocytes when stimulated with ß-adrenergic agonist and thiazolidinedione. There was increased UCP1 protein and importantly increases in various indicators of mitochondrial bioenergetics. Next, we determined optimal transfection conditions for the UCP1-shRNA lentiviral system and subsequently applied this to 'browned' WAT. UCP1 knockdown decreased the brown/beige-fat gene profile and decreased mitochondrial respiration. In summary, this study optimizes lentiviral UCP1-shRNA technology in vitro. This technique could be applied to inguinal fat depots in vivo. This would allow investigation of contribution of depots to whole-body metabolism to help elucidate the physiological relevance of beige fat.


Asunto(s)
Tejido Adiposo Beige/metabolismo , Metabolismo Energético/genética , Homeostasis/genética , Lentivirus/genética , Interferencia de ARN , Proteína Desacopladora 1/deficiencia , Proteína Desacopladora 1/genética , Adipocitos/metabolismo , Tejido Adiposo Beige/citología , Animales , Glucólisis/genética , Masculino , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética , Termogénesis/genética
10.
Sci Rep ; 9(1): 9511, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266983

RESUMEN

Adipocytes support key metabolic and endocrine functions of adipose tissue. Lipid is stored in two major classes of depots, namely visceral adipose (VA) and subcutaneous adipose (SA) depots. Increased visceral adiposity is associated with adverse health outcomes, whereas the impact of SA tissue is relatively metabolically benign. The precise molecular features associated with the functional differences between the adipose depots are still not well understood. Here, we characterised transcriptomes and methylomes of isolated adipocytes from matched SA and VA tissues of individuals with normal BMI to identify epigenetic differences and their contribution to cell type and depot-specific function. We found that DNA methylomes were notably distinct between different adipocyte depots and were associated with differential gene expression within pathways fundamental to adipocyte function. Most striking differential methylation was found at transcription factor and developmental genes. Our findings highlight the importance of developmental origins in the function of different fat depots.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Grasa Intraabdominal/metabolismo , Grasa Subcutánea/metabolismo , Transcriptoma , Adipocitos/citología , Adipocitos/metabolismo , Adulto , Sitios de Unión , Índice de Masa Corporal , Regulación hacia Abajo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Grasa Intraabdominal/citología , Persona de Mediana Edad , Elementos Reguladores de la Transcripción , Grasa Subcutánea/citología , Factores de Transcripción/metabolismo , Regulación hacia Arriba
11.
J Cachexia Sarcopenia Muscle ; 10(6): 1228-1240, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31225722

RESUMEN

BACKGROUND: It has long been recognized that vitamin D deficiency is associated with muscle weakness and falls. Vitamin D receptor (VDR) is present at very low levels in normal muscle. Whether vitamin D plays a direct role in muscle function is unknown and is a subject of hot debate. Myocyte-specific deletion of VDR would provide a strategy to answer this question. METHODS: Myocyte-specific vitamin D receptor (mVDR) null mice were generated by crossing human skeletal actin-Cre mice with floxed VDR mice. The effects of gene deletion on the muscle phenotype were studied in terms of body tissue composition, muscle tissue histology, and gene expression by real-time PCR. RESULTS: Unlike whole-body VDR knockout mice, mVDR mice showed a normal body size. The mVDR showed a distinct muscle phenotype featuring reduced proportional lean mass (70% vs. 78% of lean mass), reduced voluntary wheel-running distance (22% decrease, P = 0.009), reduced average running speed, and reduced grip strength (7-16% reduction depending on age at testing). With their decreased voluntary exercise, and decreased lean mass, mVDR have increased proportional fat mass at 20% compared with 13%. Surprisingly, their muscle fibres showed slightly increased diameter, as well as the presence of angular fibres and central nuclei suggesting ongoing remodelling. There were, however, no clear changes in fibre type and there was no increase in muscle fibrosis. VDR is a transcriptional regulator, and changes in the expression of candidate genes was examined in RNA extracted from skeletal muscle. Alterations were seen in myogenic gene expression, and there was decreased expression of cell cycle genes cyclin D1, D2, and D3 and cyclin-dependent kinases Cdk-2 and Cdk-4. Expression of calcium handling genes sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCA) Serca2b and Serca3 was decreased and Calbindin mRNA was lower in mVDR muscle. CONCLUSIONS: This study demonstrates that vitamin D signalling is needed for myocyte function. Despite the low level of VDR protein normally found muscle, deleting myocyte VDR had important effects on muscle size and strength. Maintenance of normal vitamin D signalling is a useful strategy to prevent loss of muscle function and size.


Asunto(s)
Músculo Esquelético/patología , Receptores de Calcitriol/deficiencia , Sarcopenia/genética , Deficiencia de Vitamina D/complicaciones , Actinas/genética , Animales , Proteínas de Ciclo Celular/genética , Regulación hacia Abajo , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Músculo Esquelético/metabolismo , Tamaño de los Órganos , Especificidad de Órganos , Sarcopenia/etiología , Sarcopenia/metabolismo , Sarcopenia/fisiopatología
12.
Diabetologia ; 62(8): 1463-1477, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31098671

RESUMEN

AIMS/HYPOTHESIS: Chronic glucocorticoid therapy causes insulin resistance, dyslipidaemia, abnormal fat accumulation, loss of muscle mass and osteoporosis. Here we describe a hitherto unknown sexual dimorphism in the metabolic response to chronic glucocorticoid exposure in mice. This led us to investigate whether glucocorticoid-induced insulin resistance and obesity were dependent on sex hormones. METHODS: Male and female CD1 mice were treated for 4 weeks with supraphysiological doses (~250 µg/day) of corticosterone, the main glucocorticoid in rodents, or equivalent volume of vehicle (drinking water without corticosterone). To investigate the effects of sex hormones, a separate group of mice were either orchidectomised or ovariectomised prior to corticosterone treatment, with or without dihydrotestosterone replacement. Body composition was determined before and after corticosterone treatment, and insulin tolerance was assessed after 7 and 28 days of treatment. Adipocyte morphology was assessed in white and brown adipose tissues by immunohistochemistry, and fasting serum concentrations of NEFA, triacylglycerols, total cholesterol and free glycerol were measured using colorimetric assays. Obesity- and diabetes-related hormones were measured using multiplex assays, and RNA and protein expression in adipose tissues were measured by RT-PCR and immunoblotting, respectively. RESULTS: Chronic corticosterone treatment led to insulin resistance, fasting hyperinsulinaemia, increased adiposity and dyslipidaemia in male, but not female mice. In males, orchidectomy improved baseline insulin sensitivity and attenuated corticosterone-induced insulin resistance, but did not prevent fat accumulation. In androgen-deficient mice (orchidectomised males, and intact and ovariectomised females) treated with dihydrotestosterone, corticosterone treatment led to insulin resistance and dyslipidaemia. In brown adipose tissue, androgens were required for corticosterone-induced intracellular lipid accumulation ('whitening'), and dihydrotestosterone specifically exacerbated corticosterone-induced accumulation of white adipose tissue by increasing adipocyte hypertrophy. Androgens also suppressed circulating adiponectin concentrations, but corticosterone-induced insulin resistance did not involve additional suppression of adiponectin levels. In white adipose tissue, androgens were required for induction of the glucocorticoid target gene Gilz (also known as Tsc22d3) by corticosterone. CONCLUSIONS/INTERPRETATION: In mice, androgens potentiate the development of insulin resistance, fat accumulation and brown adipose tissue whitening following chronic glucocorticoid treatment.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Andrógenos/metabolismo , Corticosterona/efectos adversos , Glucocorticoides/efectos adversos , Resistencia a la Insulina , Adipocitos/citología , Adiponectina/metabolismo , Adiposidad , Animales , Composición Corporal , Femenino , Prueba de Tolerancia a la Glucosa , Inflamación , Insulina/metabolismo , Masculino , Ratones , Obesidad , Factores Sexuales
13.
Cell Rep ; 27(8): 2370-2384.e6, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31116982

RESUMEN

The development of autoimmune disease type 1 diabetes (T1D) is determined by both genetic background and environmental factors. Environmental triggers include RNA viruses, particularly coxsackievirus (CV), but how they induce T1D is not understood. Here, we demonstrate that deletion of the transcription factor hypoxia-inducible factor-1α (HIF-1α) from ß cells increases the susceptibility of non-obese diabetic (NOD) mice to environmentally triggered T1D from coxsackieviruses and the ß cell toxin streptozotocin. Similarly, knockdown of HIF-1α in human islets leads to a poorer response to coxsackievirus infection. Studies in coxsackievirus-infected islets demonstrate that lack of HIF-1α leads to impaired viral clearance, increased viral load, inflammation, pancreatitis, and loss of ß cell mass. These findings show an important role for ß cells and, specifically, lack of ß cell HIF-1α in the development of T1D. These data suggest new strategies for the prevention of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/prevención & control , Subunidad alfa del Factor 1 Inducible por Hipoxia/uso terapéutico , Animales , Apoptosis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/farmacología , Masculino , Ratones
14.
Diabetologia ; 60(10): 1961-1971, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28735354

RESUMEN

AIMS/HYPOTHESIS: Beta cell replacement is a potential cure for type 1 diabetes. In humans, islet transplants are currently infused into the liver via the portal vein, although this site has disadvantages. Here, we investigated alternative transplantation sites for human and murine islets in recipient mice, comparing the portal vein with quadriceps muscle and kidney, liver and spleen capsules. METHODS: Murine islets were isolated from C57BL6/J mice and transplanted into syngeneic recipients. Human islets were isolated and transplanted into either severe combined immunodeficiency (SCID) or recombination-activating gene 1 (RAG-1) immunodeficient recipient mice. All recipient mice were 8-12 weeks of age and had been rendered diabetic (defined as blood glucose concentrations ≥20 mmol/l on two consecutive days before transplantation) by alloxan tetrahydrate treatment. Islets were transplanted into five different sites (portal vein, quadriceps muscle, kidney, liver and spleen capsules). Blood glucose concentrations were monitored twice weekly until mice were killed. Dose-response studies were also performed to determine the minimum number of islets required to cure diabetes ('cure' is defined for this study as random fed blood glucose of <15 mmol/l). RESULTS: For transplantation of murine islets into the different sites, the kidney yielded 100% success, followed by muscle (70%), portal vein (60%), spleen capsule (29%) and liver capsule (0%). For human islets, transplantation into the kidney cured diabetes in 75-80% of recipient mice. Transplantation into muscle and portal vein had intermediate success (both 29% at 2000 islet equivalents), while transplantation into liver and spleen capsule failed (0%). With increased islet mass, success rates for muscle grafts improved to 52-56%. CONCLUSIONS/INTERPRETATION: For both human and murine islets, equivalent or superior glucose lowering results were obtained for transplantation into skeletal muscle, compared with the portal vein. Unfortunately, kidney grafts are not feasible in human recipients. Skeletal muscle offers easier access and greater potential for protocol biopsies. This study suggests that human trials of muscle as a transplant site may be warranted.


Asunto(s)
Diabetes Mellitus Experimental/cirugía , Trasplante de Islotes Pancreáticos/métodos , Riñón/cirugía , Hígado/cirugía , Vena Porta/cirugía , Músculo Cuádriceps/cirugía , Bazo/cirugía , Animales , Glucemia , Diabetes Mellitus Experimental/sangre , Supervivencia de Injerto , Humanos , Ratones , Ratones Endogámicos C57BL
15.
Obes Surg ; 27(2): 399-407, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27465935

RESUMEN

BACKGROUND: Alterations in gastrointestinal, pancreatic, and adipose hormone levels may have a greater role in weight loss than initially appreciated. The laparoscopic sleeve gastrectomy (LSG) operation is now the most frequently performed bariatric operation in many countries, but there are relatively few data regarding its molecular effects. We sought to characterize the effect of LSG on fasting plasma levels of selected hormones and on non-esterified fatty acids (NEFA), and to compare these to levels in non-obese control individuals. MATERIALS AND METHODS: The levels of nine plasma hormones were measured using a multiplex bead-based assay at baseline and at 3 months after operation in 11 obese patients undergoing LSG. NEFA levels were also measured. The levels were compared to those for 22 age- and sex-matched non-obese individuals. RESULTS: At baseline, obese patients showed significantly higher expression of C-peptide, insulin, and leptin and significantly lower ghrelin, glucose-dependent insulinotropic peptide (GIP), and resistin compared to non-obese controls (p < 0.05). LSG resulted in a reduction in BMI from 42.5 ± 6.47 kg/m2 at operation to 35.2 ± 5.14 kg/m2 at 3 months (42 % mean excess weight loss, p < 0.001). LSG led to a significant decrease in ghrelin, glucagon-like peptide-1 (GLP-1), glucagon, leptin, plasminogen activator inhibitor-1 (PAI-1), and NEFA. CONCLUSION: LSG induces marked early changes in the fasting levels of factors thought to be important regulators of obesity and metabolic health. These changes differ somewhat from the findings for operations with a malabsorptive component, suggesting that subtle differences exist in the mechanisms of weight loss between LSG and other bariatric operations.


Asunto(s)
Adipoquinas/sangre , Ácidos Grasos no Esterificados/sangre , Gastrectomía , Hormonas Gastrointestinales/sangre , Obesidad Mórbida/sangre , Obesidad Mórbida/cirugía , Hormonas Pancreáticas/sangre , Adiposidad , Adulto , Anciano , Estudios de Casos y Controles , Ayuno/sangre , Femenino , Gastrectomía/métodos , Gastrectomía/rehabilitación , Humanos , Masculino , Persona de Mediana Edad , Pérdida de Peso
16.
Semin Cell Dev Biol ; 54: 68-81, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26529279

RESUMEN

Although muscle wasting is the obvious manifestation of cancer cachexia that impacts on patient quality of life, the loss of lipid reserves and metabolic imbalance in adipose tissue also contribute to the devastating impact of cachexia. Depletion of fat depots in cancer patients is more pronounced than loss of muscle and often precedes, or even occurs in the absence of, reduced lean body mass. Rapid mobilisation of triglycerides stored within adipocytes to supply the body with fatty acids in periods of high-energy demand is normally mediated through a well-defined process of lipolysis involving the lipases ATGL, HSL and MGL. Studies into how these lipases contribute to fat loss in cancer cachexia have revealed the prominent role for ATGL in initiating lipolysis during adipose tissue atrophy, together with links between tumour-derived factors and the signalling pathways that control lipid flux within fat cells. The recent findings of increased thermogenesis in brown fat during cancer cachexia indicate that metabolically active adipose tissue contributes to the imbalance in energy homeostasis involved in catabolic wasting. Such energetically futile use of fatty acids liberated from adipose tissue to generate heat represents a maladaptive response in conjunction with anorexia experienced by cancer patients. As IL-6 release by tumours provokes lipolysis and activates the thermogenic programme in brown fat, this review explores the overlap in dysregulated metabolic processes due to inflammatory mediators in cancer cachexia and other disease states characterised by elevated cytokines such as obesity and diabetes.


Asunto(s)
Tejido Adiposo/metabolismo , Caquexia/etiología , Caquexia/metabolismo , Lipólisis , Neoplasias/complicaciones , Termogénesis , Animales , Caquexia/fisiopatología , Metabolismo Energético , Humanos , Neoplasias/fisiopatología
17.
Case Rep Endocrinol ; 2015: 510985, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26257968

RESUMEN

Individuals presenting with primary hyperparathyroidism (PHPT) at a young age commonly have an underlying germline gene mutation in one of the following genes: MEN1, CASR, or CDC73. A small number of families with primary hyperparathyroidism have been identified with germline mutations in CDKN1B and those patients with primary hyperparathyroidism have almost exclusively been women who present in middle age suggesting that the age of onset of PHPT in MEN4 may be later than that of MEN1. We present a case of apparently sporadic PHPT presenting in adolescence with single gland disease associated with a novel CDKN1B germline mutation (heterozygote for a missense mutation in exon 1 of the CDKN1B gene (c.378G>C) (p.E126D)). The implication from this case is that CDKN1B germline mutations may be associated with PHPT at an earlier age than previously thought.

18.
Cell Metab ; 21(6): 795-6, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26039444

RESUMEN

FGF21 mimetics are a promising therapeutic tool, believed to exert their anti-obesity effect partly through browning of white fat. Véniant et al. (2015) and Samms et al. (2015) present evidence arguing against fat browning as the primary mechanism causal to weight loss following FGF21-based treatment in mice.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Fármacos Antiobesidad/uso terapéutico , Factores de Crecimiento de Fibroblastos/uso terapéutico , Obesidad/tratamiento farmacológico , Animales , Masculino
19.
Diabetologia ; 58(7): 1587-600, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25899451

RESUMEN

AIMS/HYPOTHESIS: Adipose tissue (AT) distribution is a major determinant of mortality and morbidity in obesity. In mice, intra-abdominal transplantation of subcutaneous AT (SAT) protects against glucose intolerance and insulin resistance (IR), but the underlying mechanisms are not well understood. METHODS: We investigated changes in adipokines, tissue-specific glucose uptake, gene expression and systemic inflammation in male C57BL6/J mice implanted intra-abdominally with either inguinal SAT or epididymal visceral AT (VAT) and fed a high-fat diet (HFD) for up to 17 weeks. RESULTS: Glucose tolerance was improved in mice receiving SAT after 6 weeks, and this was not attributable to differences in adiposity, tissue-specific glucose uptake, or plasma leptin or adiponectin concentrations. Instead, SAT transplantation prevented HFD-induced hepatic triacylglycerol accumulation and normalised the expression of hepatic gluconeogenic enzymes. Grafted fat displayed a significant increase in glucose uptake and unexpectedly, an induction of skeletal muscle-specific gene expression. Mice receiving subcutaneous fat also displayed a marked reduction in the plasma concentrations of several proinflammatory cytokines (TNF-α, IL-17, IL-12p70, monocyte chemoattractant protein-1 [MCP-1] and macrophage inflammatory protein-1ß [ΜIP-1ß]), compared with sham-operated mice. Plasma IL-17 and MIP-1ß concentrations were reduced from as early as 4 weeks after transplantation, and differences in plasma TNF-α and IL-17 concentrations predicted glucose tolerance and insulinaemia in the entire cohort of mice (n = 40). In contrast, mice receiving visceral fat transplants were glucose intolerant, with increased hepatic triacylglycerol content and elevated plasma IL-6 concentrations. CONCLUSIONS/INTERPRETATION: Intra-abdominal transplantation of subcutaneous fat reverses HFD-induced glucose intolerance, hepatic triacylglycerol accumulation and systemic inflammation in mice.


Asunto(s)
Intolerancia a la Glucosa/cirugía , Inflamación/cirugía , Grasa Subcutánea/trasplante , Adipocitos/metabolismo , Adipocitos/ultraestructura , Adiponectina/sangre , Adiposidad , Animales , Composición Corporal , Citocinas/sangre , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos , Gluconeogénesis , Glucosa/metabolismo , Insulina/sangre , Leptina/sangre , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...