Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
iScience ; 27(3): 109103, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361611

RESUMEN

The response to infection is generally heterogeneous and diverse, with some individuals remaining asymptomatic while others present with severe disease or a diverse range of symptoms. Here, we address the role of host genetics on immune phenotypes and clinical outcomes following viral infection by studying genetically diverse mice from the Collaborative Cross (CC), allowing for use of a small animal model with controlled genetic diversity while maintaining genetic replicates. We demonstrate variation by deeply profiling a broad range of innate and adaptive immune cell phenotypes at steady-state in 63 genetically distinct CC mouse strains and link baseline immune signatures with virologic and clinical disease outcomes following infection of mice with herpes simplex virus 2 (HSV-2) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This work serves as a resource for CC strain selection based on steady-state immune phenotypes or disease presentation upon viral infection, and further, points to possible pre-infection immune correlates of survival and early viral clearance upon infection.

2.
J Clin Invest ; 133(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36951943

RESUMEN

Mucosal infections pose a significant global health burden. Antigen-specific tissue-resident T cells are critical to maintaining barrier immunity. Previous studies in the context of systemic infection suggest that memory CD8+ T cells may also provide innate-like protection against antigenically unrelated pathogens independent of T cell receptor engagement. Whether bystander T cell activation is also an important defense mechanism in the mucosa is poorly understood. Here, we investigated whether innate-like memory CD8+ T cells could protect against a model mucosal virus infection, herpes simplex virus 2 (HSV-2). We found that immunization with an irrelevant antigen delayed disease progression from lethal HSV-2 challenge, suggesting that memory CD8+ T cells may mediate protection despite the lack of antigen specificity. Upon HSV-2 infection, we observed an early infiltration, rather than substantial local proliferation, of antigen-nonspecific CD8+ T cells, which became bystander-activated only within the infected mucosal tissue. Critically, we show that bystander-activated CD8+ T cells are sufficient to reduce early viral burden after HSV-2 infection. Finally, local cytokine cues within the tissue microenvironment after infection were sufficient for bystander activation of mucosal tissue memory CD8+ T cells from mice and humans. Altogether, our findings suggest that local bystander activation of CD8+ memory T cells contributes a fast and effective innate-like response to infection in mucosal tissue.


Asunto(s)
Herpes Simple , Células T de Memoria , Humanos , Ratones , Animales , Herpesvirus Humano 2 , Linfocitos T CD8-positivos , Inmunización , Memoria Inmunológica
3.
Immunohorizons ; 5(4): 157-169, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893179

RESUMEN

The goal of a successful immune response is to clear the pathogen while sparing host tissues from damage associated with pathogen replication and active immunity. Regulatory T cells (Treg) have been implicated in maintaining this balance as they contribute both to the organization of immune responses as well as restriction of inflammation and immune activation to limit immunopathology. To determine if Treg abundance prior to pathogen encounter can be used to predict the success of an antiviral immune response, we used genetically diverse mice from the collaborative cross infected with West Nile virus (WNV). We identified collaborative cross lines with extreme Treg abundance at steady state, either high or low, and used mice with these extreme phenotypes to demonstrate that baseline Treg quantity predicted the magnitude of the CD8 T cell response to WNV infection, although higher numbers of baseline Tregs were associated with reduced CD8 T cell functionality in terms of TNF and granzyme B expression. Finally, we found that abundance of CD44+ Tregs in the spleen at steady state was correlated with an increased early viral load within the spleen without an association with clinical disease. Thus, we propose that Tregs participate in disease tolerance in the context of WNV infection by tuning an appropriately focused and balanced immune response to control the virus while at the same time minimizing immunopathology and clinical disease. We hypothesize that Tregs limit the antiviral CD8 T cell function to curb immunopathology at the expense of early viral control as an overall host survival strategy.


Asunto(s)
Encéfalo/inmunología , Linfocitos T CD8-positivos/inmunología , Bazo/inmunología , Linfocitos T Reguladores/inmunología , Fiebre del Nilo Occidental/inmunología , Animales , Encéfalo/patología , Encéfalo/virología , Linfocitos T CD8-positivos/metabolismo , Granzimas/inmunología , Granzimas/metabolismo , Tolerancia Inmunológica , Masculino , Ratones , Bazo/patología , Bazo/virología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Carga Viral , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/fisiología
4.
PLoS Pathog ; 17(1): e1009287, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33513210

RESUMEN

The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from individuals that go on to become infected with SARS-CoV-2. Here, we utilized data from genetically diverse Collaborative Cross (CC) mice infected with SARS-CoV to determine whether baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. Our study serves as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Animales , COVID-19/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Carga Viral
5.
bioRxiv ; 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32995791

RESUMEN

The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans, from asymptomatic or mild disease to severe disease that can require mechanical ventilation. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from indiviuals that go on to become infected with SARS-CoV-2. Here, we utilized data from a screen of genetically diverse mice from the Collaborative Cross (CC) infected with SARS-CoV to determine whether circulating baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Further, early control of virus in the lung correlates with an increased abundance of activated CD4 and CD8 T cells and regulatory T cells prior to infections across strains. A basal propensity of T cells to express IFNg and IL17 over TNFa also correlated with early viral control. Overall, a dysregulated, pro-inflammatory signature of circulating T cells at baseline was associated with severe disease upon infection. While future studies of human samples prior to infection with SARS-CoV-2 are required, our studies in mice with SARS-CoV serve as proof of concept that circulating T cell signatures at baseline can predict clinical and virologic outcomes upon SARS-CoV infection. Identification of basal immune predictors in humans could allow for identification of individuals at highest risk of severe clinical and virologic outcomes upon infection, who may thus most benefit from available clinical interventions to restrict infection and disease. SUMMARY: We used a screen of genetically diverse mice from the Collaborative Cross infected with mouse-adapted SARS-CoV in combination with comprehensive pre-infection immunophenotyping to identify baseline circulating immune correlates of severe virologic and clinical outcomes upon SARS-CoV infection.

6.
J Infect Dis ; 221(6): 882-889, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31621854

RESUMEN

BACKGROUND: Virus infections result in a range of clinical outcomes for the host, from asymptomatic to severe or even lethal disease. Despite global efforts to prevent and treat virus infections to limit morbidity and mortality, the continued emergence and re-emergence of new outbreaks as well as common infections such as influenza persist as a health threat. Challenges to the prevention of severe disease after virus infection include both a paucity of protective vaccines as well as the early identification of individuals with the highest risk that may require supportive treatment. METHODS: We completed a screen of mice from the Collaborative Cross (CC) that we infected with influenza, severe acute respiratory syndrome-coronavirus, and West Nile virus. RESULTS: The CC mice exhibited a range of disease manifestations upon infections, and we used this natural variation to identify strains with mortality after infection and strains exhibiting no mortality. We then used comprehensive preinfection immunophenotyping to identify global baseline immune correlates of protection from mortality to virus infection. CONCLUSIONS: These data suggest that immune phenotypes might be leveraged to identify humans at highest risk of adverse clinical outcomes upon infection, who may most benefit from intensive clinical interventions, in addition to providing insight for rational vaccine design.


Asunto(s)
Mortalidad , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/mortalidad , Animales , Ratones de Colaboración Cruzada , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Virus de la Influenza A/inmunología , Gripe Humana , Masculino , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , ARN , Infecciones por Virus ARN/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/mortalidad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunas Virales/inmunología , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/mortalidad , Virus del Nilo Occidental/inmunología
7.
Proc Natl Acad Sci U S A ; 116(20): 9969-9978, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31036644

RESUMEN

Immunological memory exists so that following infection an expanded population of pathogen-specific lymphocytes can rapidly and efficiently control infection in the case of reexposure. However, in the case of CD8+ T lymphocytes, a population of unconventional CD44+CD122+ virtual memory T cells (TVM) has been described that possesses many, though not all, features of "true memory" T cells, without the requirement of first encountering cognate antigen. Here, we demonstrate a role for regulatory T cell-mediated restraint of TVM at least in part through limiting IL-15 trans-presentation by CD11b+ dendritic cells. Further, we show that keeping TVM in check ensures development of functional, antigen-specific "true" memory phenotype CD8+ T cells that can assist in pathogen control upon reexposure.


Asunto(s)
Memoria Inmunológica , Linfocitos T Reguladores/fisiología , Animales , Linfocitos T CD8-positivos/fisiología , Antígeno CTLA-4/fisiología , Células Dendríticas/fisiología , Integrina beta1 , Interleucina-15/fisiología , Masculino , Ratones
8.
J Infect Dis ; 219(7): 1162-1171, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30371803

RESUMEN

BACKGROUND: A challenge to the design of improved therapeutic agents and prevention strategies for neuroinvasive infection and associated disease is the lack of known natural immune correlates of protection. A relevant model to study such correlates is offered by the Collaborative Cross (CC), a panel of recombinant inbred mouse strains that exhibit a range of disease manifestations upon infection. METHODS: We performed an extensive screen of CC-F1 lines infected with West Nile virus (WNV), including comprehensive immunophenotyping, to identify groups of lines that exhibited viral neuroinvasion or neuroinvasion with disease and lines that remained free of WNV neuroinvasion and disease. RESULTS: Our data reveal that protection from neuroinvasion and disease is multifactorial and that several immune outcomes can contribute. Immune correlates identified include decreased suppressive activity of regulatory T cells at steady state, which correlates with peripheral restriction of the virus. Further, a rapid contraction of WNV-specific CD8+ T cells in the brain correlated with protection from disease. CONCLUSIONS: These immune correlates of protection illustrate additional networks and pathways of the WNV immune response that cannot be observed in the C57BL/6 mouse model. Additionally, correlates of protection exhibited before infection, at baseline, provide insight into phenotypic differences in the human population that may predict clinical outcomes upon infection.


Asunto(s)
Ratones de Colaboración Cruzada/inmunología , Enfermedades del Sistema Nervioso/inmunología , Fiebre del Nilo Occidental/inmunología , Virus del Nilo Occidental/inmunología , 2',5'-Oligoadenilato Sintetasa/genética , Inmunidad Adaptativa , Animales , Encéfalo/inmunología , Encéfalo/patología , Relación CD4-CD8 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Ratones de Colaboración Cruzada/genética , Modelos Animales de Enfermedad , Heterocigoto , Inmunidad Innata , Inmunofenotipificación , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades del Sistema Nervioso/microbiología , Polimorfismo Genético , Bazo/inmunología , Bazo/patología , Linfocitos T Reguladores/inmunología , Fiebre del Nilo Occidental/complicaciones , Fiebre del Nilo Occidental/genética
9.
Curr Protoc Mouse Biol ; 7(4): 221-235, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29261232

RESUMEN

The use of a mouse model to study the breadth of symptoms and disease severity seen in human West Nile virus (WNV) infection can provide insight into the kinetics of the immune response and the specific pathways responsible for control of WNV infection and viral clearance. Here, we provide protocols for performing WNV infection of mice, as well as complete immunophenotyping analysis of the cellular immune response to infection in both the periphery and the central nervous system in a mouse model of WNV infection. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Modelos Animales de Enfermedad , Inmunidad Celular , Ratones , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/virología , Animales , Inmunofenotipificación , Ratones Endogámicos C57BL , Virus del Nilo Occidental
10.
Cell Rep ; 21(8): 2313-2325, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166619

RESUMEN

The Collaborative Cross (CC) is a panel of reproducible recombinant inbred mouse strains with high levels of standing genetic variation, affording an unprecedented opportunity to perform experiments in a small animal model containing controlled genetic diversity while allowing for genetic replicates. Here, we advance the utility of this unique mouse resource for immunology research because it allows for both examination and genetic dissection of mechanisms behind adaptive immune states in mice with distinct and defined genetic makeups. This approach is based on quantitative trait locus mapping: identifying genetically variant genome regions associated with phenotypic variance in traits of interest. Furthermore, the CC can be utilized for mouse model development; distinct strains have unique immunophenotypes and immune properties, making them suitable for research on particular diseases and infections. Here, we describe variations in cellular immune phenotypes across F1 crosses of CC strains and reveal quantitative trait loci responsible for several immune phenotypes.


Asunto(s)
Variación Genética/genética , Haplotipos/genética , Linfocitos T/inmunología , Animales , Mapeo Cromosómico , Cruzamientos Genéticos , Ratones Endogámicos , Fenotipo , Sitios de Carácter Cuantitativo/genética
11.
Sci Rep ; 7: 40720, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28094802

RESUMEN

Given the rapid spread of flaviviruses such as West Nile virus (WNV) and Zika virus, it is critical that we develop a complete understanding of the key mediators of an effective anti-viral response. We previously demonstrated that WNV infection of mice deficient in mitochondrial antiviral-signaling protein (MAVS), the signaling adaptor for RNA helicases such as RIG-I, resulted in increased death and dysregulated immunity, which correlated with a failure of Treg expansion following infection. Thus, we sought to determine if intrinsic MAVS signaling is required for participation of Tregs in anti-WNV immunity. Despite evidence of increased Treg cell division, Foxp3 expression was not stably maintained after WNV infection in MAVS-deficient mice. However, intrinsic MAVS signaling was dispensable for Treg proliferation and suppressive capacity. Further, we observed generation of an effective anti-WNV immune response when Tregs lacked MAVS, thereby demonstrating that Treg detection of the presence of WNV through the MAVS signaling pathway is not required for generation of effective immunity. Together, these data suggest that while MAVS signaling has a considerable impact on Treg identity, this effect is not mediated by intrinsic MAVS signaling but rather is likely an effect of the overproduction of pro-inflammatory cytokines generated in MAVS-deficient mice after WNV infection.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/metabolismo , Flavivirus/fisiología , Transducción de Señal , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Enfermedad Aguda , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Infecciones por Flavivirus/genética , Infecciones por Flavivirus/virología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Inmunofenotipificación , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Fiebre del Nilo Occidental , Virus del Nilo Occidental
12.
PLoS Pathog ; 12(11): e1005996, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27806117

RESUMEN

Infection with West Nile virus (WNV) leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013)F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.


Asunto(s)
Linfocitos T Reguladores/inmunología , Fiebre del Nilo Occidental/inmunología , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Virus del Nilo Occidental/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA