Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; : mbcE24060282, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985515

RESUMEN

Coat protein complex II (COPII) governs the initial steps of biosynthetic secretory protein transport from the endoplasmic reticulum (ER), facilitating the movement of a wide variety of cargoes. Here, we demonstrate that Trk-fused gene (TFG) regulates the rate at which inner COPII coat proteins are concentrated at ER subdomains. Specifically, in cells lacking TFG, the GTPase-activating protein (GAP) Sec23 accumulates more rapidly at budding sites on the ER as compared to control cells, potentially altering the normal timing of GTP hydrolysis on Sar1. Under these conditions, anterograde trafficking of several secretory cargoes is delayed, irrespective of their predicted size. We propose that TFG controls the local, freely available pool of Sec23 during COPII coat formation and limits its capacity to prematurely destabilize COPII complexes on the ER. This function of TFG enables it to act akin to a rheostat, promoting the ordered recruitment of Sec23, which is critical for efficient secretory cargo export.

2.
Nat Commun ; 14(1): 8140, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066006

RESUMEN

Co-assembly of the multilayered coat protein complex II (COPII) with the Sar1 GTPase at subdomains of the endoplasmic reticulum (ER) enables secretory cargoes to be concentrated efficiently within nascent transport intermediates, which subsequently deliver their contents to ER-Golgi intermediate compartments. Here, we define the spatiotemporal accumulation of native COPII subunits and secretory cargoes at ER subdomains under differing nutrient availability conditions using a combination of CRISPR/Cas9-mediated genome editing and live cell imaging. Our findings demonstrate that the rate of inner COPII coat recruitment serves as a determinant for the pace of cargo export, irrespective of COPII subunit expression levels. Moreover, increasing inner COPII coat recruitment kinetics is sufficient to rescue cargo trafficking deficits caused by acute nutrient limitation. Our findings are consistent with a model in which the rate of inner COPII coat addition acts as an important control point to regulate cargo export from the ER.


Asunto(s)
Retículo Endoplásmico , Proteínas , Transporte de Proteínas/fisiología , Transporte Biológico , Proteínas/metabolismo , Retículo Endoplásmico/metabolismo , Nutrientes , Aparato de Golgi/metabolismo
3.
Brain Behav Immun ; 113: 303-316, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516387

RESUMEN

Metabolomics, proteomics and DNA methylome assays, when done in tandem from the same blood sample and analyzed together, offer an opportunity to evaluate the molecular basis of post-traumatic stress disorder (PTSD) course and pathogenesis. We performed separate metabolomics, proteomics, and DNA methylome assays on blood samples from two well-characterized cohorts of 159 active duty male participants with relatively recent onset PTSD (<1.5 years) and 300 male veterans with chronic PTSD (>7 years). Analyses of the multi-omics datasets from these two independent cohorts were used to identify convergent and distinct molecular profiles that might constitute potential signatures of severity and progression of PTSD and its comorbid conditions. Molecular signatures indicative of homeostatic processes such as signaling and metabolic pathways involved in cellular remodeling, neurogenesis, molecular safeguards against oxidative stress, metabolism of polyunsaturated fatty acids, regulation of normal immune response, post-transcriptional regulation, cellular maintenance and markers of longevity were significantly activated in the active duty participants with recent PTSD. In contrast, we observed significantly altered multimodal molecular signatures associated with chronic inflammation, neurodegeneration, cardiovascular and metabolic disorders, and cellular attritions in the veterans with chronic PTSD. Activation status of signaling and metabolic pathways at the early and late timepoints of PTSD demonstrated the differential molecular changes related to homeostatic processes at its recent and multi-system syndromes at its chronic phase. Molecular alterations in the recent PTSD seem to indicate some sort of recalibration or compensatory response, possibly directed in mitigating the pathological trajectory of the disorder.


Asunto(s)
Trastornos por Estrés Postraumático , Veteranos , Humanos , Masculino , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/metabolismo , Epigenómica , Proteómica , Metabolómica
4.
Res Sq ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993182

RESUMEN

Co-assembly of the multilayered coat protein complex II (COPII) with the Sari GTPase at subdomains of the endoplasmic reticulum (ER) enables secretory cargoes to be concentrated efficiently within nascent transport intermediates, which subsequently deliver their contents to ER-Golgi intermediate compartments. Here, we define the spatiotemporal accumulation of native COPII subunits and secretory cargoes at ER subdomains under differing nutrient availability conditions using a combination of CRISPR/Cas9-mediated genome editing and live cell imaging. Our findings demonstrate that the rate of inner COPII coat assembly serves as a determinant for the pace of cargo export, irrespective of COPII subunit expression levels. Moreover, increasing inner COPII coat assembly kinetics is sufficient to rescue cargo trafficking deficits caused by acute nutrient limitation in a manner dependent on Sar1 GTPase activity. Our findings are consistent with a model in which the rate of inner COPII coat formation acts as an important control point to regulate cargo export from the ER.

5.
Mil Med ; 188(3-4): 561-571, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-35266517

RESUMEN

INTRODUCTION: Acute Stress Reactions (ASRs) affect a subgroup of individuals who experience traumatic stress. In the context of military operations, such reactions are often termed Combat and Operational Stress Reactions (COSRs). COSRs not only encompass all symptoms of ASRs but also include additional symptoms related to military combat and may develop at a rate higher than the general public experiences ASRs. Despite an obvious need, there are currently no approved pharmacologic treatments or guidelines for ASR and/or COSR. Preclinical rodent stress models and behavioral assessments are used to evaluate pharmacotherapies and elucidate underlying mechanisms. Here, we combined established traumatic stress models to develop a model of traumatic stress relevant to military trauma exposure and measured behavioral outcomes that reflect outcomes observed in ASRs and COSRs. MATERIALS AND METHODS: Adult male rats underwent exposure to either a combination of two or three traumatic stress exposures (e.g., predator exposure, underwater trauma (UWT), and/or inescapable shock) or control procedures. Behavioral performance on the open field, elevated plus maze, and acoustic startle response (SR) was then assessed 24- and 48-hours following stress/control procedures. RESULTS: In Experiment 1, rats were exposed to a two-stressor model, where predator exposure was coupled with UWT. Minor behavioral deficits were observed in SR for stress-exposed rats as compared to controls. In Experiment 2, inescapable shock was added to predator exposure and UWT. Behavioral performance deficits were observed across all behavioral tests. In Experiment 3, procedures from Experiment 2 were repeated with the only major modification being a shortened predator exposure duration, which resulted in performance deficits in SR only. CONCLUSIONS: We found that the three-stressor model of Experiment 2 resulted in the greatest overall behavioral disturbance (both in the number of variables and magnitude of stress effects). Interestingly, behavioral deficits elicited from the shorter predator exposure were distinct from those observed with longer predator exposure times. Together, these results generally suggest that combined preclinical stressors with military-relevant elements result in behavioral performance deficits reflective of post-trauma phenotypes in Soldiers. The present findings support the use of both physical and psychological stressors to model operationally relevant traumatic stress exposure.


Asunto(s)
Personal Militar , Trastornos por Estrés Postraumático , Ratas , Masculino , Animales , Humanos , Ratas Sprague-Dawley , Reflejo de Sobresalto/fisiología , Modelos Animales de Enfermedad , Estrés Psicológico/complicaciones , Trastornos por Estrés Postraumático/etiología
6.
Innov Clin Neurosci ; 20(10-12): 12-17, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38193100

RESUMEN

Point-of-care genetic testing for single nucleotide polymorphisms (SNPs) to improve psychiatric treatment in outpatient settings remains a challenge. The presence or absence of certain genomic alleles determines the activity of the encoded enzymes, which ultimately defines the individual's drug metabolism rate. Classification of poor metabolizers (PMs) and rapid/ultrarapid metabolizers (RMs/UMs) would facilitate personalization and precision of treatment. However, current pharmacogenomic (PGx) testing of multiple genes is comprehensive and requires quantitative analyses for interpretations. We recommend qualitative, fast-track, point-of-care screenings, which are one- or-two gene-based analyses, as a quick initial screening tool to potentially eliminate the need for an expensive quantitative send-out test, which is a costly and lengthy process. We speculate that these tests will be relevant in two major scenarios: 1) clinical psychiatry for treating disease states such as major depressive disorder (MDD) and posttraumatic stress disorder (PTSD), where trial and error is still the mainstay of drug selection and symptom management, a process that is associated with significant delay in optimizing individualized treatment and dose, and thus response; and 2) pain management, where quickly determining an effective level of analgesia while avoiding a toxic level can cause a drastic improvement in mental health.

7.
J Clin Sleep Med ; 18(9): 2291-2312, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35678060

RESUMEN

Scientific evidence that acute, posttrauma sleep disturbances (eg, nightmares and insomnia) can contribute significantly to the pathogenesis of trauma-induced disorders is compelling. Sleep disturbances precipitating from trauma are uniquely predictive of daytime posttrauma symptom occurrence and severity, as well as subsequent onset of mental health disorders, including post-traumatic stress disorder. Conversely, adequate sleep during the acute posttrauma period is associated with reduced likelihood of adverse mental health outcomes. These findings, which are broadly consistent with what is known about the role of sleep in the regulation of emotion, suggest that the acute posttrauma period constitutes a "window of opportunity" during which treatment of sleep disturbances may be especially effective for preventing or mitigating progression of aberrant psychophysiological processes. At this point, the weight of the scientific evidence supporting this possibility warrants initiation of clinical trials to confirm the benefits of targeted prophylactic sleep enhancement, and to establish treatment guidelines as appropriate. CITATION: Swift KM, Thomas CL, Balkin TJ, Lowery-Gionta EG, Matson LM. Acute sleep interventions as an avenue for treatment of trauma-associated disorders. J Clin Sleep Med. 2022;18(9):2291-2312.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Trastornos por Estrés Postraumático , Sueños/psicología , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/complicaciones , Trastornos del Sueño-Vigilia/complicaciones , Trastornos del Sueño-Vigilia/terapia , Trastornos por Estrés Postraumático/complicaciones , Trastornos por Estrés Postraumático/prevención & control
8.
Nat Commun ; 12(1): 1200, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619256

RESUMEN

Learning-activated engram neurons play a critical role in memory recall. An untested hypothesis is that these same neurons play an instructive role in offline memory consolidation. Here we show that a visually-cued fear memory is consolidated during post-conditioning sleep in mice. We then use TRAP (targeted recombination in active populations) to genetically label or optogenetically manipulate primary visual cortex (V1) neurons responsive to the visual cue. Following fear conditioning, mice respond to activation of this visual engram population in a manner similar to visual presentation of fear cues. Cue-responsive neurons are selectively reactivated in V1 during post-conditioning sleep. Mimicking visual engram reactivation optogenetically leads to increased representation of the visual cue in V1. Optogenetic inhibition of the engram population during post-conditioning sleep disrupts consolidation of fear memory. We conclude that selective sleep-associated reactivation of learning-activated sensory populations serves as a necessary instructive mechanism for memory consolidation.


Asunto(s)
Miedo/fisiología , Consolidación de la Memoria/fisiología , Memoria/fisiología , Sueño/fisiología , Animales , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Electrodos , Tecnología de Fibra Óptica , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Optogenética , Privación de Sueño/fisiopatología , Corteza Visual/fisiopatología
9.
Plants (Basel) ; 9(2)2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-32041317

RESUMEN

Bacterial ribosome hibernation factors sequester ribosomes in an inactive state during the stationary phase and in response to stress. The cyanobacterial ribosome hibernation factor LrtA has been suggested to inactivate ribosomes in the dark and to be important for post-stress survival. In this study, we addressed the hypothesis that Plastid Specific Ribosomal Protein 1 (PSRP1), the chloroplast-localized LrtA homolog in plants, contributes to the global repression of chloroplast translation that occurs when plants are shifted from light to dark. We found that the abundance of PSRP1 and its association with ribosomes were similar in the light and the dark. Maize mutants lacking PSRP1 were phenotypically normal under standard laboratory growth conditions. Furthermore, the absence of PSRP1 did not alter the distribution of chloroplast ribosomes among monosomes and polysomes in the light or in the dark, and did not affect the light-regulated synthesis of the chloroplast psbA gene product. These results suggest that PSRP1 does not play a significant role in the regulation of chloroplast translation by light. As such, the physiological driving force for the retention of PSRP1 during chloroplast evolution remains unclear.

10.
Sleep ; 43(5)2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-31784755

RESUMEN

Sleep impacts diverse physiological and neural processes and is itself affected by the menstrual cycle; however, few studies have examined the effects of the estrous cycle on sleep in rodents. Studies of disease mechanisms in females therefore lack critical information regarding estrous cycle influences on relevant sleep characteristics. We recorded electroencephalographic (EEG) activity from multiple brain regions to assess sleep states as well as sleep traits such as spectral power and interregional spectral coherence in freely cycling females across the estrous cycle and compared with males. Our findings show that the high hormone phase of proestrus decreases the amount of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep and increases the amount of time spent awake compared with other estrous phases and to males. This spontaneous sleep deprivation of proestrus was followed by a sleep rebound in estrus which increased NREM and REM sleep. In proestrus, spectral power increased in the delta (0.5-4 Hz) and the gamma (30-60 Hz) ranges during NREM sleep, and increased in the theta range (5-9 Hz) during REM sleep during both proestrus and estrus. Slow-wave activity (SWA) and cortical sleep spindle density also increased in NREM sleep during proestrus. Finally, interregional NREM and REM spectral coherence increased during proestrus. This work demonstrates that the estrous cycle affects more facets of sleep than previously thought and reveals both sex differences in features of the sleep-wake cycle related to estrous phase that likely impact the myriad physiological processes influenced by sleep.


Asunto(s)
Caracteres Sexuales , Sueño , Animales , Electroencefalografía , Femenino , Masculino , Ratas , Privación de Sueño , Fases del Sueño , Sueño REM
11.
Curr Biol ; 28(22): 3599-3609.e4, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30393040

RESUMEN

Sleep is critical for proper memory consolidation. The locus coeruleus (LC) releases norepinephrine throughout the brain except when the LC falls silent throughout rapid eye movement (REM) sleep and prior to each non-REM (NREM) sleep spindle. We hypothesize that these transient LC silences allow the synaptic plasticity that is necessary to incorporate new information into pre-existing memory circuits. We found that spontaneous LC activity within sleep spindles triggers a decrease in spindle power. By optogenetically stimulating norepinephrine-containing LC neurons at 2 Hz during sleep, we reduced sleep spindle occurrence, as well as NREM delta power and REM theta power, without causing arousals or changing sleep amounts. Stimulating the LC during sleep following a hippocampus-dependent food location learning task interfered with consolidation of newly learned locations and reconsolidation of previous locations, disrupting next-day place cell activity. The LC stimulation-induced reduction in NREM sleep spindles, delta, and REM theta and reduced ripple-spindle coupling all correlated with decreased hippocampus-dependent performance on the task. Thus, periods of LC silence during sleep following learning are essential for normal spindle generation, delta and theta power, and consolidation of spatial memories.


Asunto(s)
Locus Coeruleus/fisiología , Consolidación de la Memoria/fisiología , Memoria Espacial/fisiología , Animales , Encéfalo/fisiología , Región CA1 Hipocampal/fisiología , Electroencefalografía , Hipocampo/fisiología , Masculino , Células de Lugar/fisiología , Ratas , Ratas Long-Evans , Sueño/fisiología , Fases del Sueño/fisiología , Sueño REM/fisiología , Sueño de Onda Lenta/fisiología , Ritmo Teta/fisiología
12.
Aust J Prim Health ; 21(4): 450-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25347050

RESUMEN

The quality of data derived from primary healthcare electronic systems has been subjected to little critical systematic analysis, especially in relation to the purported benefits and substantial investment in electronic information systems in primary care. Many indicators of quality of care are based on numbers of certain types of patients as denominators. Consistency of denominator data is vital for comparison of indicators over time and between services. This paper examines the consistency of denominator data extracted from electronic health records (EHRs) for monitoring of access and quality of primary health care. Data collection and analysis were conducted as part of a prospective mixed-methods formative evaluation of the Commonwealth Government's Indigenous Chronic Disease Package. Twenty-six general practices and 14 Aboriginal Health Services (AHSs) located in all Australian States and Territories and in urban, regional and remote locations were purposively selected within geographically defined locations. Percentage change in reported number of regular patients in general practices ranged between -50% and 453% (average 37%). The corresponding figure for AHSs was 1% to 217% (average 31%). In approximately half of general practices and AHSs, the change was ≥ 20%. There were similarly large changes in reported numbers of patients with a diagnosis of diabetes or coronary heart disease (CHD), and Indigenous patients. Inconsistencies in reported numbers were due primarily to limited capability of staff in many general practices and AHSs to accurately enter, manage, and extract data from EHRs. The inconsistencies in data required for the calculation of many key indicators of access and quality of care places serious constraints on the meaningful use of data extracted from EHRs. There is a need for greater attention to quality of denominator data in order to realise the potential benefits of EHRs for patient care, service planning, improvement, and policy. We propose a quality improvement approach for enhancing data quality.


Asunto(s)
Registros Electrónicos de Salud/normas , Atención Primaria de Salud/normas , Mejoramiento de la Calidad , Australia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...