Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955956

RESUMEN

One of the causes of diabetes in infants is the defect of the insulin gene (INS). Gene mutations can lead to proinsulin misfolding, an increased endoplasmic reticulum (ER) stress and possible beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear. We generated induced pluripotent stem cells (iPSCs) from a patient diagnosed with neonatal diabetes mellitus carrying the INS mutation in the 2nd intron (c.188-31G>A) and engineered isogenic CRISPR/Cas9 mutation-corrected cell lines. Differentiation into beta-like cells demonstrated that mutation led to the emergence of an ectopic splice site within the INS and appearance of the abnormal RNA transcript. Isogenic iPSC lines differentiated into beta-like cells showed a clear difference in formation of organoids at pancreatic progenitor stage of differentiation. Moreover, MIN6 insulinoma cell line expressing mutated cDNA demonstrated significant decrease in proliferation capacity and activation of ER stress and unfolded protein response (UPR)-associated genes. These findings shed light on the mechanism underlying the pathogenesis of monogenic diabetes.


Asunto(s)
Diabetes Mellitus , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Diferenciación Celular/genética , Proliferación Celular/genética , Diabetes Mellitus/metabolismo , Estrés del Retículo Endoplásmico/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Recién Nacido , Células Secretoras de Insulina/metabolismo , Mutación
2.
Stem Cell Res ; 47: 101929, 2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32739878

RESUMEN

Insulin gene (INS) mutations prove to be the second most common cause of permanent neonatal diabetes. Here, we report the generation of iPSC line from a patient, heterozygous for the intronic INS mutation that presumably leads to aberrant splicing. Dermal fibroblasts were reprogrammed using non-integrating RNA-based vector. Derivation and expansion of iPSCs were performed under feeder-free culture conditions. The iPSC line expressed pluripotency markers, had normal karyotype, could differentiate into three germ layers in vitro and retained the disease mutation. This line can be a powerful tool for modeling of diabetes and cell replacement therapy as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...