Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Healthcare (Basel) ; 11(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37297706

RESUMEN

Autism Spectrum Disorder (ASD) is associated with complex distress and challenging behaviours that have a negative impact on the everyday life of those with ASD, as well as their parents and carers. These challenging behaviours include negative emotional behaviours, motor behaviours, and changes in routines. Even though challenging behaviours occur in most subjects with ASD, the cause of these largely remains unknown. It has been implicated that these challenging behaviours are associated with a change in the health of those with ASD. More research needs to be conducted that can establish a direct association. Towards this goal, the present study aimed to explore whether health status had an impact on the distressing behaviour in the subjects diagnosed with ASD. We analysed the response from the parents/carers in a Macedonian population of those with ASD, to determine which challenging behaviours were most likely to be observed during a change in health. Based on a scoring system, the manifestation of challenging behaviour was evaluated and compared with the changes in health. Changes in appetite or dietary preferences, irritability and low mood, and loss of previously acquired skills had the greatest association with a change in health. These findings provide early insight into types of challenging behaviours that are directly associated with a change in health. Our results demonstrate a relationship between health status and challenging behaviour in the subject with autism, suggesting that caregivers may need to consider this when choosing strategies for managing challenging behaviour.

3.
J Clin Med ; 12(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37297816

RESUMEN

Agenesis of the Corpus Callosum (ACC) can result in multiple neurological deficits including social and behavioural issues. However, the underlying aetiology, clinical co-morbidity and the contributing risk factors remain elusive, resulting in inaccurate prognosis and delayed therapy. The main objective of this study was to comprehensively describe the epidemiology and clinical co-morbidity associated with patients diagnosed with ACC. The secondary objective was to identify the factors that contribute towards increased risk for ACC. For this, we analysed 22 years (1998-2020) of clinical data across the whole of Wales, UK collected through the Congenital Anomaly Register & Information Service (CARIS) and Public Health Wales (PHW). Our results demonstrate that complete ACC (84.1%) was the prevalent subtype, in comparison to partial ACC. Further, ventriculomegaly/hydrocephalus (26.37%) and ventricular septal defect (21.92%) were identified to be the most prevalent neural malformation (NM) and congenital heart disorder (CHD) in our cohort. Although 12.7% of subjects with ACC had both an NM and CHD, we found no significant association between them (χ2 (1, n = 220) = 3.84, p = 0.33). We found socioeconomic deprivation and increased maternal age contributed towards an increased risk for ACC. To the best of our knowledge, this study for the first time defines the clinical phenotypes and the factors that contribute to ACC within the Welsh population. These findings will be of value to both patients and healthcare professionals, who may take preventative or remedial measures.

4.
J Neurotrauma ; 40(19-20): 2164-2173, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37261979

RESUMEN

The neuroinflammatory response after traumatic brain injury (TBI) is implicated as a key mediator of secondary injury in both the acute and chronic periods after primary injury. Microglia are the key innate immune cell in the central nervous system, responding to injury with the release of cytokines and chemokines. In this context, we aimed to characterize the downstream cytokine response of human induced pluripotent stem cell (iPSC)-derived microglia when stimulated with five separate cytokines identified after human TBI. The iPSC-derived microglia were exposed to interleukin (IL)-1ß, IL-4, IL-6, IL-10, and tumor necrosis factor (TNF) in the concentration ranges identified in clinical TBI studies. The downstream cytokine response was measured against a panel of 37 separate cytokines over a 72h time-course. The secretome revealed concentration-, time- and combined concentration and time-dependent downstream responses. TNF appeared to be the strongest inducer of downstream cytokine changes (51), followed by IL-1ß (26) and IL-4 (19). IL-10 (11) and IL-6 (10) produced fewer responses. We also compare these responses with our previous studies of iPSC-derived neuronal and astrocyte cultures and the in vivo human TBI cytokine response. Notably, we found microglial culture to induce both a wider range of downstream cytokine responses and a greater fold change in concentration for those downstream responses, compared with astrocyte and neuronal cultures. In summary, we present a dataset for human microglial cytokine responses specific to the secretome found in the clinical context of TBI. This reductionist approach complements our previous datasets for astrocyte and neuronal responses and will provide a platform to enable future studies to unravel the complex neuroinflammatory network activated after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Células Madre Pluripotentes Inducidas , Animales , Humanos , Microglía/patología , Interleucina-10 , Interleucina-6 , Interleucina-4 , Modelos Animales de Enfermedad , Lesiones Traumáticas del Encéfalo/complicaciones , Citocinas , Lesiones Encefálicas/complicaciones , Factor de Necrosis Tumoral alfa
5.
Front Cell Dev Biol ; 10: 880544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493075

RESUMEN

The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.

6.
BMC Med ; 20(1): 123, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35440050

RESUMEN

BACKGROUND: Tuberous sclerosis complex (TSC) is a rare multi-system genetic disorder characterised by the presence of benign tumours throughout multiple organs including the brain, kidneys, heart, liver, eyes, lungs and skin, in addition to neurological and neuropsychiatric complications. Intracardiac tumour (rhabdomyoma), neurodevelopmental disorders (NDDs) and kidney disorders (KD) are common manifestations of TSC and have been linked with TSC1 and TSC2 loss-of-function mutations independently, but the dynamic relationship between these organ manifestations remains unexplored. Therefore, this study aims to characterise the nature of the relationship specifically between these three organs' manifestations in TSC1 and TSC2 mutation patients. METHODS: Clinical data gathered from TSC patients across South Wales registered with Cardiff and Vale University Health Board (CAV UHB) between 1990 and 2020 were analysed retrospectively to evaluate abnormalities in the heart, brain and kidney development. TSC-related abnormalities such as tumour prevalence, location and size were analysed for each organ in addition to neuropsychiatric involvement and were compared between TSC1 and TSC2 mutant genotypes. Lastly, statistical co-occurrence between organ manifestations co-morbidity was quantified, and trajectories of disease progression throughout organs were modelled. RESULTS: This study found a significantly greater mutational frequency at the TSC2 locus in the cohort in comparison to TSC1. An equal proportion of male and female patients were observed in this group and by meta-analysis of previous studies. No significant difference in characterisation of heart involvement was observed between TSC1 and TSC2 patients. Brain involvement was seen with increased severity in TSC2 patients, characterised by a greater prevalence of cortical tubers and communication disorders. Renal pathology was further enhanced in TSC2 patients, marked by increased bilateral angiomyolipoma prevalence. Furthermore, co-occurrence of NDDs and KDs was the most positively correlated out of investigated manifestations, regardless of genotype. Analysis of disease trajectories revealed a more diverse clinical outcome for TSC2 patients: however, a chronological association of rhabdomyoma, NDD and KD was most frequently observed for TSC1 patients. CONCLUSIONS: This study marks the first empirical investigation of the co-morbidity between congenital heart defects (CHD), NDDs, and KDs in TSC1 and TSC2 patients. This remains a unique first step towards the characterisation of the dynamic role between genetics, heart function, brain function and kidney function during the early development in the context of TSC.


Asunto(s)
Rabdomioma , Esclerosis Tuberosa , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Mutación , Estudios Retrospectivos , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/epidemiología , Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor/genética
7.
Mol Psychiatry ; 27(2): 819-830, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34112971

RESUMEN

Copy Number Variation (CNV) at the 1q21.1 locus is associated with a range of neurodevelopmental and psychiatric disorders in humans, including abnormalities in head size and motor deficits. Yet, the functional consequences of these CNVs (both deletion and duplication) on neuronal development remain unknown. To determine the impact of CNV at the 1q21.1 locus on neuronal development, we generated induced pluripotent stem cells from individuals harbouring 1q21.1 deletion or duplication and differentiated them into functional cortical neurons. We show that neurons with 1q21.1 deletion or duplication display reciprocal phenotype with respect to proliferation, differentiation potential, neuronal maturation, synaptic density and functional activity. Deletion of the 1q21.1 locus was also associated with an increased expression of lower cortical layer markers. This difference was conserved in the mouse model of 1q21.1 deletion, which displayed altered corticogenesis. Importantly, we show that neurons with 1q21.1 deletion and duplication are associated with differential expression of calcium channels and demonstrate that physiological deficits in neurons with 1q21.1 deletion or duplication can be pharmacologically modulated by targeting Ca2+ channel activity. These findings provide biological insight into the neuropathological mechanism underlying 1q21.1 associated brain disorder and indicate a potential target for therapeutic interventions.


Asunto(s)
Variaciones en el Número de Copia de ADN , Células Madre Pluripotentes Inducidas , Anomalías Múltiples , Animales , Deleción Cromosómica , Cromosomas Humanos Par 1 , Variaciones en el Número de Copia de ADN/genética , Humanos , Megalencefalia , Ratones , Neuronas , Fenotipo
8.
Front Cardiovasc Med ; 8: 655463, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336942

RESUMEN

Rare pathogenic copy number variants (CNVs) are genetic rearrangements that have been associated with an increased risk for congenital heart disorders (CHDs). However, the association of CNVs with atypical brain development, leading to neurodevelopmental disorders (NDDs), in the presence of CHDs remains unclear. We attempted to explore this association by establishing the prevalence and burden of CNVs associated with CHD in a Welsh population and by studying the effect of rare CNVs associated with CHDs in mediating the risk of NDDs. Toward this goal, we analyzed data from the Congenital Anomaly Register for Wales (CARIS), referred from hospitals in Wales between 1998 and 2018, which included 1,113 subjects in total. Of these, 785 subjects were included in the study following application of the exclusion criteria, and a total of 28 rare CNVs associated with CHD were analyzed. The findings from this cohort study identified 22q11.2 deletion as the most prominent CNV across the cohort. Our data demonstrates that the survival rate of the cohort after 3 years was 99.9%, and mortality fell significantly between 1 and 2 years and between 2 and 3 years [F (1,27) = 10, p = 0.0027; F (1,27) = 5.8, p = 0.0222]. Importantly, the data set revealed a positive correlation between the incidence of congenital heart disease and the incidence of neurodevelopmental abnormalities in patients with CNVs across the whole cohort [95% CI (0.4062, 0.8449), p < 0.0001, r = 0.6829]. Additionally, we identified significant CNVs that result in the co-morbidity of CHD and NDD and show that septal defects and global developmental delay are major congenital defects. Further research should identify a common molecular mechanism leading to the phenotypic comorbidity of CHDs and NDDs, arising from a common CNV, which can have an implication for improving risk classification and for fetal neuroprotection strategies in the affected children and in precision medicine.

10.
Mol Autism ; 11(1): 42, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487215

RESUMEN

Patients diagnosed with chromosome microdeletions or duplications, known as copy number variants (CNVs), present a unique opportunity to investigate the relationship between patient genotype and cell phenotype. CNVs have high genetic penetrance and give a good correlation between gene locus and patient clinical phenotype. This is especially effective for the study of patients with neurodevelopmental disorders (NDD), including those falling within the autism spectrum disorders (ASD). A key question is whether this correlation between genetics and clinical presentation at the level of the patient can be translated to the cell phenotypes arising from the neurodevelopment of patient induced pluripotent stem cells (iPSCs).Here, we examine how iPSCs derived from ASD patients with an associated CNV inform our understanding of the genetic and biological mechanisms underlying the aetiology of ASD. We consider selection of genetically characterised patient iPSCs; use of appropriate control lines; aspects of human neurocellular biology that can capture in vitro the patient clinical phenotype; and current limitations of patient iPSC-based studies. Finally, we consider how future research may be enhanced to maximise the utility of CNV patients for research of pathological mechanisms or therapeutic targets.


Asunto(s)
Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/metabolismo , Variaciones en el Número de Copia de ADN , Susceptibilidad a Enfermedades , Células Madre Pluripotentes Inducidas/metabolismo , Animales , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genómica/métodos , Humanos , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo
11.
Front Neurosci ; 14: 138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425740

RESUMEN

Background: Degenerative cervical myelopathy (DCM), also known as cervical spondylotic myelopathy is the leading cause of spinal cord compression in adults. The mainstay of treatment is surgical decompression, which leads to partial recovery of symptoms, however, long term prognosis of the condition remains poor. Despite advances in treatment methods, the underlying pathobiology is not well-known. A better understanding of the disease is therefore required for the development of treatments to improve outcomes following surgery. Objective: To systematically evaluate the pathophysiology of DCM and the mechanism underlying recovery following decompression. Methods: A total of 13,808 published articles were identified in our systematic search of electronic databases (PUBMED, WEB OF SCIENCE). A total of 51 studies investigating the secondary injury mechanisms of DCM or physiology of recovery in animal models of disease underwent comprehensive review. Results: Forty-seven studies addressed the pathophysiology of DCM. Majority of the studies demonstrated evidence of neuronal loss following spinal cord compression. A number of studies provided further details of structural changes in neurons such as myelin damage and axon degeneration. The mechanisms of injury to cells included direct apoptosis and increased inflammation. Only four papers investigated the pathobiological changes that occur in spinal cords following decompression. One study demonstrated evidence of axonal plasticity following decompressive surgery. Another study demonstrated ischaemic-reperfusion injury following decompression, however this phenomenon was worse when decompression was delayed. Conclusions: In preclinical studies, the pathophysiology of DCM has been poorly studied and a number of questions remain unanswered. The physiological changes seen in the decompressed spinal cord has not been widely investigated and it is paramount that researchers investigate the decompressed spinal cord further to enable the development of therapeutic tools, to enhance recovery following surgery.

12.
Neurosci Biobehav Rev ; 108: 83-93, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682886

RESUMEN

Copy number variant (CNV) syndromes are often associated with both neurocognitive deficits (NCDs) and congenital heart defects (CHDs). Children and adults with cardiac developmental defects likely to have NCDs leading to increased risk of hospitalisation and reduced level of independence. To date, the association between these two phenotypes have not been explored in relation to CNV syndromes. In order to address this question, we systematically reviewed the prevalence of CHDs in a range of CNV syndromes associated with NCDs. A meta-analysis showed a relationship with the size of CNV and its association with both NCDs and CHDs, and also inheritance pattern. To our knowledge, this is the first review to establish association between NCD and CHDs in CNV patients, specifically in relation to the severity of NCD. Importantly, we also found specific types of CHDs were associated with severe neurocognitive deficits. Finally, we discuss the implications of these results for patients in the clinical setting which warrants further exploration of this association in order to lead an improvement in the quality of patient's life.


Asunto(s)
Comorbilidad , Variaciones en el Número de Copia de ADN/genética , Enfermedades Genéticas Congénitas/genética , Cardiopatías Congénitas/genética , Trastornos Neurocognitivos/genética , Índice de Severidad de la Enfermedad , Humanos , Trastornos Neurocognitivos/fisiopatología
13.
Methods Mol Biol ; 1493: 363-378, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27787864

RESUMEN

Oligodendrocytes are the myelinating cells of the central nervous system. The role of oligodendrocytes in health and disease has been considerably enhanced by the development of methods to isolate and culture oligodendrocytes from central nervous system tissue. The cellular and molecular mechanisms involved in oligodendrocyte differentiation can be identified by challenging oligodendrocyte progenitors cells (OPCs) by altering their extracellular environment and intrinsic differentiation pathways. To address these issues, it is imperative to develop an in vitro protocol where pure OPCs are isolated and cultured in the presence of inhibitory developmental and differentiation cues like Semaphorin 3A. In this chapter, we describe methods to isolate and culture OPCs from neonatal rat brain tissue and further characterise their differentiation into oligodendrocytes. The described protocol is relatively simple in comparison to existing protocols and can be used to study the effect of lesion-associated inhibitors like Semaphorin 3A on oligodendrocyte differentiation.


Asunto(s)
Oligodendroglía/citología , Semaforinas/fisiología , Animales , Animales Recién Nacidos , Linaje de la Célula , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...