Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt B): 352-364, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39151228

RESUMEN

HYPOTHESIS: Self-driven actions, like motion, are fundamental characteristics of life. Today, intense research focuses on the kinetics of droplet motion. Quantifying macroscopic motion and exploring the underlying mechanisms are crucial in self-structuring and self-healing materials, advancements in soft robotics, innovations in self-cleaning environmental processes, and progress within the pharmaceutical industry. Usually, the driving forces inducing macroscopic motion act at the molecular scale, making their real-time and high-resolution investigation challenging. Label-free surface sensitive measurements with high lateral resolution could in situ measure both molecular-scale interactions and microscopic motion. EXPERIMENTS: We employ surface-sensitive label-free sensors to investigate the kinetic changes in a self-assembled monolayer of the trimethyl(octadecyl)azanium chloride surfactant on a substrate surface during the self-propelled motion of nitrobenzene droplets. The adsorption-desorption of the surfactant at various concentrations, its removal due to the moving organic droplet, and rebuilding mechanisms at droplet-visited areas are all investigated with excellent time, spatial, and surface mass density resolution. FINDINGS: We discovered concentration dependent velocity fluctuations, estimated the adsorbed amount of surfactant molecules, and revealed multilayer coverage at high concentrations. The desorption rate of surfactant (18.4 s-1) during the microscopic motion of oil droplets was determined by in situ differentiating between droplet visited and non-visited areas.

2.
ACS Sens ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082162

RESUMEN

There is an increasing need for simple-to-use, noninvasive, and rapid tools to identify and separate various cell types or subtypes at the single-cell level with sufficient throughput. Often, the selection of cells based on their direct biological activity would be advantageous. These steps are critical in immune therapy, regenerative medicine, cancer diagnostics, and effective treatment. Today, live cell selection procedures incorporate some kind of biomolecular labeling or other invasive measures, which may impact cellular functionality or cause damage to the cells. In this study, we first introduce a highly accurate single-cell segmentation methodology by combining the high spatial resolution of a phase-contrast microscope with the adhesion kinetic recording capability of a resonant waveguide grating (RWG) biosensor. We present a classification workflow that incorporates the semiautomatic separation and classification of single cells from the measurement data captured by an RWG-based biosensor for adhesion kinetics data and a phase-contrast microscope for highly accurate spatial resolution. The methodology was tested with one healthy and six cancer cell types recorded with two functionalized coatings. The data set contains over 5000 single-cell samples for each surface and over 12,000 samples in total. We compare and evaluate the classification using these two types of surfaces (fibronectin and noncoated) with different segmentation strategies and measurement timespans applied to our classifiers. The overall classification performance reached nearly 95% with the best models showing that our proof-of-concept methodology could be adapted for real-life automatic diagnostics use cases. The label-free measurement technique has no impact on cellular functionality, directly measures cellular activity, and can be easily tuned to a specific application by varying the sensor coating. These features make it suitable for applications requiring further processing of selected cells.

3.
Heliyon ; 10(9): e30239, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707416

RESUMEN

Classification of live or fixed cells based on their unlabeled microscopic images would be a powerful tool for cell biology and pathology. For such software, the first step is the generation of a ground truth database that can be used for training and testing AI classification algorithms. The Application of cells expressing fluorescent reporter proteins allows the building of ground truth datasets in a straightforward way. In this study, we present an automated imaging pipeline utilizing the Cellpose algorithm for the precise cell segmentation and measurement of fluorescent cellular intensities across multiple channels. We analyzed the cell cycle of HeLa-FUCCI cells expressing fluorescent red and green reporter proteins at various levels depending on the cell cycle state. To build the dataset, 37,000 fixed cells were automatically scanned using a standard motorized microscope, capturing phase contrast and fluorescent red/green images. The fluorescent pixel intensity of each cell was integrated to calculate the total fluorescence of cells based on cell segmentation in the phase contrast channel. It resulted in a precise intensity value for each cell in both channels. Furthermore, we conducted a comparative analysis of Cellpose 1.0 and Cellpose 2.0 in cell segmentation performance. Cellpose 2.0 demonstrated notable improvements, achieving a significantly reduced false positive rate of 2.7 % and 1.4 % false negative. The cellular fluorescence was visualized in a 2D plot (map) based on the red and green intensities of the FUCCI construct revealing the continuous distribution of cells in the cell cycle. This 2D map enables the selection and potential isolation of single cells in a specific phase. In the corresponding heatmap, two clusters appeared representing cells in the red and green states. Our pipeline allows the high-throughput and accurate measurement of cellular fluorescence providing extensive statistical information on thousands of cells with potential applications in developmental and cancer biology. Furthermore, our method can be used to build ground truth datasets automatically for training and testing AI cell classification. Our automated pipeline can be used to analyze thousands of cells within 2 h after putting the sample onto the microscope.

4.
Sci Rep ; 14(1): 11231, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755203

RESUMEN

Selecting and isolating various cell types is a critical procedure in many applications, including immune therapy, regenerative medicine, and cancer research. Usually, these selection processes involve some labeling or another invasive step potentially affecting cellular functionality or damaging the cell. In the current proof of principle study, we first introduce an optical biosensor-based method capable of classification between healthy and numerous cancerous cell types in a label-free setup. We present high classification accuracy based on the monitored single-cell adhesion kinetic signals. We developed a high-throughput data processing pipeline to build a benchmark database of ~ 4500 single-cell adhesion measurements of a normal preosteoblast (MC3T3-E1) and various cancer (HeLa, LCLC-103H, MDA-MB-231, MCF-7) cell types. Several datasets were used with different cell-type selections to test the performance of deep learning-based classification models, reaching above 70-80% depending on the classification task. Beyond testing these models, we aimed to draw interpretable biological insights from their results; thus, we applied a deep neural network visualization method (grad-CAM) to reveal the basis on which these complex models made their decisions. Our proof-of-concept work demonstrated the success of a deep neural network using merely label-free adhesion kinetic data to classify single mammalian cells into different cell types. We propose our method for label-free single-cell profiling and in vitro cancer research involving adhesion. The employed label-free measurement is noninvasive and does not affect cellular functionality. Therefore, it could also be adapted for applications where the selected cells need further processing, such as immune therapy and regenerative medicine.


Asunto(s)
Adhesión Celular , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Cinética , Ratones , Animales , Técnicas Biosensibles/métodos , Línea Celular Tumoral
5.
Sci Rep ; 14(1): 11719, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778185

RESUMEN

Cell adhesion experiments are important in tissue engineering and for testing new biologically active surfaces, prostheses, and medical devices. Additionally, the initial state of adhesion (referred to as nascent adhesion) plays a key role and is currently being intensively researched. A critical step in handling all adherent cell types is their dissociation from their substrates for further processing. Various cell dissociation methods and reagents are used in most tissue culture laboratories (here, cell dissociation from the culture surface, cell harvesting, and cell detachment are used interchangeably). Typically, the dissociated cells are re-adhered for specific measurements or applications. However, the impact of the choice of dissociation method on cell adhesion in subsequent measurements, especially when comparing the adhesivity of various surfaces, is not well clarified. In this study, we demonstrate that the application of a label-free optical sensor can precisely quantify the effect of cell dissociation methods on cell adhesivity, both at the single-cell and population levels. The optical measurements allow for high-resolution monitoring of cellular adhesion without interfering with the physiological state of the cells. We found that the choice of reagent significantly alters cell adhesion on various surfaces. Our results clearly demonstrate that biological conclusions about cellular adhesion when comparing various surfaces are highly dependent on the employed dissociation method. Neglecting the choice of cellular dissociation can lead to misleading conclusions when evaluating cell adhesion data from various sources and comparing the adhesivity of two different surfaces (i.e., determining which surface is more or less adhesive).


Asunto(s)
Adhesión Celular , Humanos , Propiedades de Superficie
6.
Heliyon ; 10(3): e25603, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38371993

RESUMEN

Small molecule natural compounds are gaining popularity in biomedicine due to their easy access to wide structural diversity and their proven health benefits in several case studies. Affinity measurements of small molecules below 100 Da molecular weight in a label-free and automatized manner using small amounts of samples have now become a possibility and reviewed in the present work. We also highlight novel label-free setups with excellent time resolution, which is important for kinetic measurements of biomolecules and living cells. We summarize how molecular-scale affinity data can be obtained from the in-depth analysis of cellular kinetic signals. Unlike traditional measurements, label-free biosensors have made such measurements possible, even without the isolation of specific cellular receptors of interest. Throughout this review, we consider epigallocatechin gallate (EGCG) as an exemplary compound. EGCG, a catechin found in green tea, is a well-established anti-inflammatory and anti-cancer agent. It has undergone extensive examination in numerous studies, which typically rely on fluorescent-based methods to explore its effects on both healthy and tumor cells. The summarized research topics range from molecular interactions with proteins and biological films to the kinetics of cellular adhesion and movement on novel biomimetic interfaces in the presence of EGCG. While the direct impact of small molecules on living cells and biomolecules is relatively well investigated in the literature using traditional biological measurements, this review also highlights the indirect influence of these molecules on the cells by modifying their nano-environment. Moreover, we underscore the significance of novel high-throughput label-free techniques in small molecular measurements, facilitating the investigation of both molecular-scale interactions and cellular processes in one single experiment. This advancement opens the door to exploring more complex multicomponent models that were previously beyond the reach of traditional assays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...