Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Eye Res ; 243: 109890, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615833

RESUMEN

Phosphodiesterase (PDE) inhibitors - such as vardenafil - are used primarily for treating erectile dysfunction via increasing cyclic guanosine monophosphate (cGMP) levels. Recent studies have also demonstrated their significant cardioprotective effects in several diseases, including diabetes, upon long-term, continuous application. However, PDE inhibitors are not specific for PDE5 and also inhibit the retinal isoform. A sustained rise in cGMP in photoreceptors is known to be toxic; therefore, we hypothesized that long-term vardenafil treatment might result in retinotoxicity. The hypothesis was tested in a clinically relevant animal model of type 2 diabetes mellitus. Histological experiments were performed on lean and diabetic Zucker Diabetic Fatty rats. Half of the animals were treated with vardenafil for six months, and the retinal effects were evaluated. Vardenafil treatment alleviated rod outer segment degeneration but decreased rod numbers in some positions and induced changes in the interphotoreceptor matrix, even in control animals. Vardenafil treatment decreased total retinal thickness in the control and diabetic groups and reduced the number of nuclei in the outer nuclear layer. Müller cell activation was detectable even in the vardenafil-treated control animals, and vardenafil did not improve gliosis in the diabetic group. Vardenafil-treated animals showed complex retinal alterations with improvements in some parameters while deterioration in others. Our results point towards the retinotoxicity of vardenafil, even without diabetes, which raises doubts about the retinal safety of long-term continuous vardenafil administration. This effect needs to be considered when approving PDE inhibitors for alternative indications.


Asunto(s)
Diabetes Mellitus Experimental , Inhibidores de Fosfodiesterasa 5 , Ratas Zucker , Diclorhidrato de Vardenafil , Diclorhidrato de Vardenafil/farmacología , Diclorhidrato de Vardenafil/toxicidad , Animales , Ratas , Inhibidores de Fosfodiesterasa 5/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/patología , Retina/efectos de los fármacos , Retina/patología , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/patología , Células Ependimogliales/metabolismo
2.
Invest Ophthalmol Vis Sci ; 62(6): 20, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-34010957

RESUMEN

Purpose: In diabetic subjects, early visual functional alterations such as color vision deficiencies (CVDs) are known to precede clinically apparent diabetic retinopathy. Prominent photoreceptor outer segment degeneration and an increase in the number of retinal dual cones (co-expressing S- and M-opsins simultaneously) have been described in diabetic rat models, suggesting a connection with the development of CVDs. As cone opsin expression is controlled by thyroid hormones, we investigated the diabetic retina in association with thyroid hormone alterations. Methods: In rat models of type 1 and 2 diabetes, dual cones were labeled by immunohistochemistry, and their numbers were analyzed in relation to free triiodothyronine (fT3) and free thyroxine (fT4) levels. Quantification of dual cones was also performed in human postmortem retinas. Additionally, a cross-sectional case-control study was performed where thyroid hormone levels were measured and color vision was assessed with Lanthony desaturated D15 discs. Results: A higher number of dual cones was detectable in diabetic rats, correlating with fT4 levels. Dual cones were also present in postmortem human retinas, with higher numbers in the three diabetic retinas. As expected, age was strongly associated with CVDs in human patients, and the presence of diabetes also increased the risk. However, the current study failed to detect any effect of thyroid hormones on the development of CVDs. Conclusions: Our results point toward the involvement of thyroid homeostasis in the opsin expression changes in diabetic rats and human samples. The evaluation of the possible clinical consequences warrants further research.


Asunto(s)
Diabetes Mellitus Experimental/sangre , Retinopatía Diabética/sangre , Células Fotorreceptoras Retinianas Conos/patología , Hormonas Tiroideas/sangre , Adulto , Anciano , Animales , Glucemia/metabolismo , Estudios de Casos y Controles , Visión de Colores/fisiología , Opsinas de los Conos/metabolismo , Estudios Transversales , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/patología , Retinopatía Diabética/patología , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Células Fotorreceptoras Retinianas Conos/metabolismo , Adulto Joven
3.
Sci Rep ; 9(1): 10463, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320684

RESUMEN

A thinning of the inner retina is one of the earliest potential markers of neuroretinal damage in diabetic subjects. The histological background is uncertain; retinal ganglion cell (RGC) loss and changes in the structure or thickness of the inner plexiform layer (IPL) have been suspected. Studies conducted on animal models on RGC pathology gave contradictory results. Hereby we present RGC numbers, distribution patterns and IPL thickness from Zucker Diabetic Fatty (ZDF) rats. After labelling RGCs on retinal whole mounts, isodensity maps were constructed, RGC numbers and distribution patterns analysed using a custom-built algorithm, enabling point-by-point comparison. There was no change in staining characteristics of the antibodies and no significant difference in average RGC densities was found compared to controls. The distribution patterns were also comparable and no significant difference was found in IPL thickness and stratification or in the number of apoptotic cells in the ganglion cell layer (GCL). Our results provide a detailed evaluation of the inner retina and exclude major RGC loss in ZDF rats and suggest that other factors could serve as a potential explanation for inner retinal thinning in clinical studies. Our custom-built method could be adopted for the assessment of other animal or human retinas.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental/fisiopatología , Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Animales , Glucemia/metabolismo , Peso Corporal , Masculino , Nervio Óptico/metabolismo , Ratas , Ratas Zucker , Células Ganglionares de la Retina/metabolismo
4.
Sci Rep ; 7(1): 8891, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827737

RESUMEN

In diabetes, retinal dysfunctions exist prior to clinically detectable vasculopathy, however the pathology behind these functional deficits is still not fully established. Previously, our group published a detailed study on the retinal histopathology of type 1 diabetic (T1D) rat model, where specific alterations were detected. Although the majority of human diabetic patients have type 2 diabetes (T2D), similar studies on T2D models are practically absent. To fill this gap, we examined Zucker Diabetic Fatty (ZDF) rats - a model for T2D - by immunohistochemistry at the age of 32 weeks. Glial reactivity was observed in all diabetic specimens, accompanied by an increase in the number of microglia cells. Prominent outer segment degeneration was detectable with changes in cone opsin expression pattern, without a decrease in the number of labelled elements. The immunoreactivity of AII amacrine cells was markedly decreased and changes were detectable in the number and staining of some other amacrine cell subtypes, while most other cells examined did not show any major alterations. Overall, the retinal histology of ZDF rats shows a surprising similarity to T1D rats indicating that despite the different evolution of the disease, the neuroretinal cells affected are the same in both subtypes of diabetes.


Asunto(s)
Nefropatías Diabéticas/patología , Retinopatía Diabética/patología , Células Amacrinas/metabolismo , Animales , Apoptosis , Glucemia , Peso Corporal , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/metabolismo , Retinopatía Diabética/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patología , Ratas , Ratas Zucker , Epitelio Pigmentado de la Retina/metabolismo
5.
J Comp Neurol ; 525(13): 2890-2914, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28542922

RESUMEN

The purpose of this work was to evaluate a potentially useful animal model, Meriones shawi (M.sh)-developing metabolic X syndrome, diabetes and possessing a visual streak similar to human macula-in the study of diabetic retinopathy and diabetic macular edema (DME). Type 2 diabetes (T2D) was induced by high fat diet administration in M.sh. Body weights, blood glucose levels were monitored throughout the study. Diabetic retinal histopathology was evaluated 3 and 7 months after diabetes induction. Retinal thickness was measured, retinal cell types were labeled by immunohistochemistry and the number of stained elements were quantified. Apoptosis was determined with TUNEL assay. T2D induced progressive changes in retinal histology. A significant decrease of retinal thickness and glial reactivity was observed without an increase in apoptosis rate. Photoreceptor outer segment degeneration was evident, with a significant decrease in the number of all cones and M-cone subtype, but-surprisingly-an increase in S-cones. Damage of the pigment epithelium was also confirmed. A decrease in the number and labeling intensity of parvalbumin- and calretinin-positive amacrine cells and a loss of ganglion cells was detected. Other cell types showed no evident alterations. No DME-like condition was noticed even after 7 months. M.sh could be a useful model to study the evolution of diabetic retinal pathology and to identify the role of hypertension and dyslipidemia in the development of the reported alterations. Longer follow up would be needed to evaluate the potential use of the visual streak in modeling human macular diseases.


Asunto(s)
Retinopatía Diabética/complicaciones , Degeneración Macular/etiología , Retina/patología , Degeneración Retiniana/etiología , Animales , Apoptosis/fisiología , Modelos Animales de Enfermedad , Gerbillinae , Degeneración Macular/patología , Masculino , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Opsinas/metabolismo , Retina/metabolismo , Degeneración Retiniana/patología , Rodopsina/metabolismo , Factor de Transcripción Brn-3A/metabolismo , cis-trans-Isomerasas/metabolismo
6.
Histol Histopathol ; 30(8): 971-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25760641

RESUMEN

The literature indicates that in diabetes retinal dysfunctions related to neural retinal alterations exist prior to clinically detectable vasculopathy. In a previous report, a detailed description about the alteration of the outer retina was given, where diabetic degeneration preceded apoptotic loss of cells (Enzsöly et al., 2014). Here, we investigated the histopathology of the inner retina in early diabetes using the same specimens. We examined rat retinas with immunohistochemistry and Western blotting, 12 weeks after streptozotocin induction of diabetes. Glial reactivity was observed in all diabetic retinal specimens; however, it was not detectable all over the retina, but appeared in randomly arranged patches, with little or no glia activation in between. Similarly, immunoreactivity of parvalbumin (staining mostly AII amacrine cells) was also decreased only in some regions. We propose that these focal changes appear prior to affecting the whole retina and overt loss of cells. In contrast to these, most other markers used (calretinin, recoverin, tyrosin hydroxylase anti-Brn-3a and also calbindin in the optic part of the retina) did not show any major alterations in the intensity of immunoreactivity or in the number of stained elements. Interestingly, under diabetic conditions, the labeling pattern of PKC-α and calbindin in the ciliary retina showed a clear resemblance to the pattern described during development. This observation is in line with our previous study, reporting an increase in the number of dual cones, coexpressing two photopigments, which is another common feature with developing retinas. These data may indicate a previously uninvestigated regenerative capacity in diabetic retina.


Asunto(s)
Retinopatía Diabética/patología , Enfermedades Neurodegenerativas/patología , Retina/patología , Células Amacrinas/metabolismo , Animales , Apoptosis , Western Blotting , Recuento de Células , Diabetes Mellitus Experimental/patología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Activación de Macrófagos , Masculino , Neuroglía/patología , Parvalbúminas/metabolismo , Ratas , Ratas Wistar , Células Bipolares de la Retina/patología , Células Ganglionares de la Retina/patología
7.
Invest Ophthalmol Vis Sci ; 55(6): 3686-99, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24845643

RESUMEN

PURPOSE: Neurodegeneration as an early event of diabetic retinopathy preceding clinically detectable vascular alterations is a widely proven issue today. While there is evidence for the impairment of color vision and contrast sensitivity in early diabetes, suggesting deteriorated photoreceptor function, the underlying neuropathology of these functional alterations is still unknown. The aim of the present study was to investigate the effects of early diabetes on the outer retinal cells. METHODS: The retinal pigment epithelium, photopigment expression, and density and morphology of photoreceptors were studied using immunocytochemistry in streptozotocin-induced diabetes in two rat strains. The fine structure of photoreceptors and pigment epithelium was also investigated with transmission electron microscopy. RESULTS: Here we found that retinal thickness was unchanged in diabetic animals and that no significant increase in the number of apoptotic cells was present. Although the density of cones expressing middle (M)- and shortwave (S)-sensitive opsins was similar in diabetic and control retinas, we detected remarkable morphologic signs of degeneration in the outer segments of diabetic rods, most M-cones, and some S-cones. A decrease in thickness and RPE65 protein immunoreactivity of the pigment epithelium were evident. Furthermore, an increased number of dual cones, coexpressing both M- and S-opsins, was detected at the peripheral retina of diabetic rats. CONCLUSIONS: Degenerative changes of photoreceptors and pigment epithelium shown here prior to apoptotic loss of photoreceptors may contribute to functional alterations reported in diabetic human patients and different animal models, thus may serve as a potential model for testing the efficacy of neuroprotective agents in diabetes.


Asunto(s)
Diabetes Mellitus Experimental/patología , Retinopatía Diabética/patología , Segmento Externo de las Células Fotorreceptoras Retinianas/ultraestructura , Animales , Apoptosis , Recuento de Células , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/etiología , Retinopatía Diabética/metabolismo , Progresión de la Enfermedad , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Lectinas/metabolismo , Masculino , Microscopía Electrónica de Transmisión , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/ultraestructura
8.
Cell Tissue Res ; 356(1): 49-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24496510

RESUMEN

During the first postnatal weeks of the developing rodent retina, rhodopsin can be detected in a number of neuron-like cells in the inner retina. In the present study, we aim to characterize the morphology, number and staining characteristics of this peculiar population. Misplaced rhodopsin-positive cells (MRCs) were analyzed on retinas of four rodent species, labeled with various rhodopsin-specific antibodies. To investigate their possible relation with non-photoreceptor cells, sections were double-stained against distinct retinal cell types and proteins of the phototransduction cascade. The possibility of synapse formation and apoptosis were also investigated. In all species studied, misplaced cells comprised a few percent of all rhodopsin-positive elements. This ratio declined from the end of the second week and MRCs disappeared nearly completely from the retina by P24. MRCs resembled resident neurons of the inner retina, while outer segment-like processes were seen only rarely. MRCs expressed no other photopigment types and showed no colocalization with any of the bipolar, horizontal, amacrine and ganglion cell markers used. While all MRCs colabeled for arrestin and recoverin, other proteins of the phototransduction cascade were only detectable in a minority of the population. Only a few MRCs were shown to form synaptic-like endings. Our results showed that, during development, some rhodopsin-expressing cells are displaced to the inner retinal layers. Although most MRCs lack morphological features of photoreceptors, they contain some but not all, elements of the phototransduction cascade, indicating that they are most probably misplaced rods that failed to complete differentiation and integrate into the photoreceptor mosaic.


Asunto(s)
Retina/crecimiento & desarrollo , Retina/metabolismo , Rodopsina/metabolismo , Células Amacrinas/citología , Células Amacrinas/metabolismo , Animales , Apoptosis , Cricetinae , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Inmunohistoquímica , Fototransducción , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Microglía/metabolismo , Ratas , Ratas Sprague-Dawley , Retina/citología , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Neuronas Retinianas/citología , Neuronas Retinianas/metabolismo , Opsinas de Bastones/metabolismo , Sinapsis/metabolismo
9.
Ann N Y Acad Sci ; 1163: 348-52, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19456357

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the growing family of neurotrophic and neuroprotective factors playing important roles during neuronal development and protection against different types of injuries, such as Parkinson's disease, excitotoxicity, and ischemia. As shown with other neuronal tissues, we provide evidence that PACAP is protective in the retina against toxic injury induced by monosodium glutamate (MSG) in vivo. The need for characterization of its fragments and analogues has recently been emphasized. The aim of the present study was to compare the effects of the physiologically occurring fragments PACAP1-38 and 1-27 and the widely used antagonists (PACAP6-38 and 6-27) in retinal degeneration induced by MSG in neonatal pups. Histological analysis showed that MSG treatment caused the degeneration of the entire inner plexiform layer and the inner nuclear and ganglion cell layers seemed fused. The total thickness of the retina was significantly reduced. Similar and substantial protective effects could be observed after three treatments with PACAP1-38 and 1-27, while MSG toxicity was further aggravated by the PACAP antagonists PACAP6-38 and 6-27. Glutamate-induced toxicity is known to play a role in several retinal pathologies. Our results provide further evidence for the effectiveness of the endogenously present PACAP forms in counteracting retinotoxicity and call for further studies leading to the discovery of potent analogues that could be used in human ophthalmic diseases.


Asunto(s)
Fragmentos de Péptidos/uso terapéutico , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/uso terapéutico , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/tratamiento farmacológico , Glutamato de Sodio/farmacología , Animales , Animales Recién Nacidos , Ratas , Ratas Wistar
10.
Neurosci Lett ; 455(1): 42-5, 2009 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-19429103

RESUMEN

Urocortin 2 (Ucn 2) is corticotropin-releasing factor (CRF) paralog that preferentially activates CRF(2) receptors. Ucns exert CRF(2)-mediated cytoprotective effects against ischemia-reperfusion injury in cardiomyocytes. However, little is known regarding potential retinoprotective effects of Ucns despite the known presence of CRF family peptides and their receptors (predominantly CRF(2 alpha)) in retina. Therefore, the present study investigated the effects of post-ischemic intravitreal Ucn 2 (2 nmol) administration on ischemia-induced retinal degeneration. Two-month-old rats were subjected to permanent bilateral common carotid artery occlusion, and their retinas were processed histologically after two weeks survival to determine the density of viable cells in the ganglion cell layer and the thickness of all retinal layers. In vehicle-treated subjects, carotid occlusion reduced retina thickness by approximately 60% as compared to sham-operated animals. In contrast, intraocular Ucn 2 treatment led to a marked amelioration of the retinal layers, and the thickness of all layers was significantly increased by 40% compared to ischemic vehicle-treated subjects. Ucn 2 treatment also increased the number of cells by 55% in the ganglion cell layer as compared to those from carotid-occluded retinas of vehicle-treated subjects. These findings suggest that intraocular Ucn 2 treatment may protect against ischemia-induced retinal degeneration, results with potential therapeutic implications for ophthalmic diseases.


Asunto(s)
Arteriopatías Oclusivas/complicaciones , Enfermedades de las Arterias Carótidas/complicaciones , Hormona Liberadora de Corticotropina/uso terapéutico , Degeneración Retiniana/prevención & control , Urocortinas/uso terapéutico , Animales , Arteria Carótida Común , Recuento de Células , Hormona Liberadora de Corticotropina/administración & dosificación , Inyecciones , Isquemia/complicaciones , Ratones , Ratas , Ratas Wistar , Receptores de Hormona Liberadora de Corticotropina/agonistas , Retina/patología , Degeneración Retiniana/etiología , Degeneración Retiniana/patología , Urocortinas/administración & dosificación , Cuerpo Vítreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...