RESUMEN
Water diffusion gives rise to micrometer-scale sensitivity of diffusion MRI (dMRI) to cellular-level tissue structure. The advent of precision medicine and quantitative imaging hinges on revealing the information content of dMRI, and providing its parsimonious basis- and hardware-independent "fingerprint". Here we reveal the geometry of a multi-dimensional dMRI signal, classify all 21 invariants of diffusion and covariance tensors in terms of irreducible representations of the group of rotations, and relate them to tissue properties. Previously studied dMRI contrasts are expressed via 7 invariants, while the remaining 14 provide novel complementary information. We design acquisitions based on icosahedral vertices guaranteeing minimal number of measurements to determine 3-4 most used invariants in only 1-2 minutes for the whole brain. Representing dMRI signals via scalar invariant maps with definite symmetries will underpin machine learning classifiers of brain pathology, development, and aging, while fast protocols will enable translation of advanced dMRI into clinical practice.
RESUMEN
Background: Single diffusion encoding is a widely used, noninvasive technique for probing the tissue microstructure in breast tumors. However, it does not provide detailed information about the microenvironmental complexity. This study investigated the clinical utility of tensor-valued diffusion encoding for evaluating microstructural changes in breast cancer after neoadjuvant chemotherapy (NAC). Methods: We retrospectively included patients underwent chemotherapy for histologically proven invasive breast cancer between July 2020 and June 2023 and monitored the tumor response with breast magnetic resonance imaging (MRI), including tensor-valued diffusion encoding. We reviewed pre- and post-NAC MRIs regarding chemotherapy in 23 breast cancers. Q-space trajectory imaging (QTI) parameters were estimated at each time-point, and were compared with histopathological parameters. Results: The mean total mean kurtosis (MKT), anisotropic mean kurtosis (MKA), and microscopic fractional anisotropy (µFA) were significantly decreased on post-NAC MRI compared with pre-NAC MRI, with the large effect size (ES) in MKA and µFA (0.81±0.41 vs. 0.99±0.33, ES: 0.48, P=0.03; 0.48±0.30 vs. 0.73±0.27, ES: 0.88, P<0.001; 0.58±0.14 vs. 0.68±0.11, ES: 0.79, P=0.003; respectively). Regarding prognostic factors, tumors with high Ki-67 expression showed significantly lower pre-NAC mean diffusivity (MD) and higher pre-NAC µFA compared to tumors with low Ki-67 expression (0.98±0.09 vs. 1.25±0.20, P=0.002; and 0.72±0.07 vs. 0.57±0.10, P=0.005; respectively). And negative progesterone receptor (PR) group revealed significantly lower MKT, MKA, and isotropic mean kurtosis than positive PR group on the post-NAC MRI (0.60±0.31 vs. 1.03±0.40, P=0.008; 0.36±0.21 vs. 0.61±0.33, P=0.04; and 0.23±0.17 vs. 0.42±0.25, P=0.046; respectively). Conclusions: QTI parameters reflected the microstructural changes in breast cancer treated with NAC and can be used as noninvasive imaging biomarkers correlated with prognostic factors.
RESUMEN
BACKGROUND: Accurate tumor volume estimation is important for evaluating the response to radionuclide therapy and external beam radiotherapy as well as to other pharmaceuticals. A common method for monitoring the growth of subcutaneous tumors in pre-clinical models and assessing the treatment response is to measure the tumor length and width by external calipers to estimate its volume. This procedure relies on an assumption of a spheroidal tumor shape wherein the tumor depth equals the width and can yield considerably inaccuracies. Ultrasound imaging is a non-invasive technique that can measure all three axes of the tumor and might be an alternative to caliper measurement with potentially greater accuracy and comparable ease-of-use and throughput. Both 2D and 3D ultrasound imaging are possible, the former offering short scan times without the need for anesthesia and heating-valuable factors for longitudinal studies in large animal cohorts. Nevertheless, tumor volume estimation accuracy by 2D ultrasound imaging has seen limited investigation. In this study we have evaluated the accuracy of tumor volume estimation by caliper and 2D ultrasound with comparisons to reference measurements by magnetic resonance imaging (MRI) in a pre-clinical model of prostate cancer treated with either external beam radiotherapy, radionuclide therapy, or no treatment. RESULTS: Tumor volumes were measured longitudinally in 29 mice by caliper, ultrasound, and MRI before and after external beam radiotherapy, [177Lu]Lu-PSMA-617 radionuclide therapy, or no treatment. Caliper measurements had a marked bias, overestimating the tumor volumes by a median of 150% compared to MRI. Ultrasound measurements were markedly more accurate, with a median bias of -21% compared to MRI. CONCLUSION: Ultrasound imaging is a reliable and accurate method for tumor volume estimation in pre-clinical models of radiotherapy, whereas caliper measurements are prone to overestimation.
Asunto(s)
Imagen por Resonancia Magnética , Neoplasias de la Próstata , Carga Tumoral , Ultrasonografía , Animales , Ultrasonografía/métodos , Imagen por Resonancia Magnética/métodos , Ratones , Masculino , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Humanos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes. This study aimed to investigate the sensitivity of tensor-valued diffusion encoding in detecting such changes in brain microstructural integrity in cART-treated PWH. Additionally, it explored relationships between these metrics, neurocognitive scores, and plasma levels of neurofilament light (NFL) chain and glial fibrillary acidic protein (GFAP). Using MRI at 3T, 24 PWH and 31 healthy controls underwent cross-sectional examination. The results revealed significant variations in b-tensor encoding metrics across white matter regions, with associations observed between these metrics, cognitive performance, and blood markers of neuronal and glial injury (NFL and GFAP). Moreover, a significant interaction between HIV status and imaging metrics was observed, particularly impacting total cognitive scores in both gray and white matter. These findings suggest that b-tensor encoding metrics offer heightened sensitivity in detecting subtle changes associated with axonal injury in HIV infection, underscoring their potential clinical relevance in understanding neurocognitive impairment in PWH.
RESUMEN
PURPOSE: This work reports for the first time on the implementation and application of cardiac diffusion-weighted MRI on a Connectom MR scanner with a maximum gradient strength of 300 mT/m. It evaluates the benefits of the increased gradient performance for the investigation of the myocardial microstructure. METHODS: Cardiac diffusion-weighted imaging (DWI) experiments were performed on 10 healthy volunteers using a spin-echo sequence with up to second- and third-order motion compensation ( M 2 $$ {M}_2 $$ and M 3 $$ {M}_3 $$ ) and b = 100 , 450 $$ b=100,450 $$ , and 1000 s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ (twice the b max $$ {b}_{\mathrm{max}} $$ commonly used on clinical scanners). Mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA), and secondary eigenvector angle (E2A) were calculated for b = [100, 450] s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ and b = [100, 1000] s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ for both M 2 $$ {M}_2 $$ and M 3 $$ {M}_3 $$ . RESULTS: The MD values with M 3 $$ {M}_3 $$ are slightly higher than with M 2 $$ {M}_2 $$ with Δ MD = 0 . 05 ± 0 . 05 [ × 1 0 - 3 mm 2 / s ] ( p = 4 e - 5 ) $$ \Delta \mathrm{MD}=0.05\pm 0.05\kern0.3em \left[\times 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=4e-5\right) $$ for b max = 450 s / mm 2 $$ {b}_{\mathrm{max}}=450\kern0.3em \mathrm{s}/{\mathrm{mm}}^2 $$ and Δ MD = 0 . 03 ± 0 . 03 [ × 1 0 - 3 mm 2 / s ] ( p = 4 e - 4 ) $$ \Delta \mathrm{MD}=0.03\pm 0.03\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=4e-4\right) $$ for b max = 1000 s / mm 2 $$ {b}_{\mathrm{max}}=1000\kern0.3em \mathrm{s}/{\mathrm{mm}}^2 $$ . A reduction in MD is observed by increasing the b max $$ {b}_{\mathrm{max}} $$ from 450 to 1000 s / mm 2 $$ \mathrm{s}/{\mathrm{mm}}^2 $$ ( Δ MD = 0 . 06 ± 0 . 04 [ × 1 0 - 3 mm 2 / s ] ( p = 1 . 6 e - 9 ) $$ \Delta \mathrm{MD}=0.06\pm 0.04\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=1.6e-9\right) $$ for M 2 $$ {M}_2 $$ and Δ MD = 0 . 08 ± 0 . 05 [ × 1 0 - 3 mm 2 / s ] ( p = 1 e - 9 ) $$ \Delta \mathrm{MD}=0.08\pm 0.05\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=1e-9\right) $$ for M 3 $$ {M}_3 $$ ). The difference between FA, E2A, and HA was not significant in different schemes ( p > 0 . 05 $$ p>0.05 $$ ). CONCLUSION: This work demonstrates cardiac DWI in vivo with higher b-value and higher order of motion compensated diffusion gradient waveforms than is commonly used. Increasing the motion compensation order from M 2 $$ {M}_2 $$ to M 3 $$ {M}_3 $$ and the maximum b-value from 450 to 1000 s / mm 2 $$ \mathrm{s}/{\mathrm{mm}}^2 $$ affected the MD values but FA and the angular metrics (HA and E2A) remained unchanged. Our work paves the way for cardiac DWI on the next-generation MR scanners with high-performance gradient systems.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Corazón , Humanos , Masculino , Adulto , Corazón/diagnóstico por imagen , Femenino , Voluntarios Sanos , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Anisotropía , Algoritmos , Interpretación de Imagen Asistida por Computador/métodosRESUMEN
Diffusion magnetic resonance imaging is sensitive to the microstructural properties of brain tissue. However, estimating clinically and scientifically relevant microstructural properties from the measured signals remains a highly challenging inverse problem that machine learning may help solve. This study investigated if recently developed rotationally invariant spherical convolutional neural networks can improve microstructural parameter estimation. We trained a spherical convolutional neural network to predict the ground-truth parameter values from efficiently simulated noisy data and applied the trained network to imaging data acquired in a clinical setting to generate microstructural parameter maps. Our network performed better than the spherical mean technique and multi-layer perceptron, achieving higher prediction accuracy than the spherical mean technique with less rotational variance than the multi-layer perceptron. Although we focused on a constrained two-compartment model of neuronal tissue, the network and training pipeline are generalizable and can be used to estimate the parameters of any Gaussian compartment model. To highlight this, we also trained the network to predict the parameters of a three-compartment model that enables the estimation of apparent neural soma density using tensor-valued diffusion encoding.
RESUMEN
Joint modeling of diffusion and relaxation has seen growing interest due to its potential to provide complementary information about tissue microstructure. For brain white matter, we designed an optimal diffusion-relaxometry MRI protocol that samples multiple b-values, B-tensor shapes, and echo times (TE). This variable-TE protocol (27 min) has as subsets a fixed-TE protocol (15 min) and a 2-shell dMRI protocol (7 min), both characterizing diffusion only. We assessed the sensitivity, specificity and reproducibility of these protocols with synthetic experiments and in six healthy volunteers. Compared with the fixed-TE protocol, the variable-TE protocol enables estimation of free water fractions while also capturing compartmental T2 relaxation times. Jointly measuring diffusion and relaxation offers increased sensitivity and specificity to microstructure parameters in brain white matter with voxelwise coefficients of variation below 10%.
RESUMEN
PURPOSE: To investigate the effects of compartmental anisotropy on filtered exchange imaging (FEXI) in white matter (WM). THEORY AND METHODS: FEXI signals were measured using multiple combinations of diffusion filter and detection directions in five healthy volunteers. Additional filters, including a trace-weighted diffusion filter with trapezoidal gradients, a spherical b-tensor encoded diffusion filter, and a T2 filter, were tested with trace-weighted diffusion detection. RESULTS: A large range of apparent exchange rates (AXR) and both positive and negative filter efficiencies (σ) were found depending on the mutual orientation of the filter and detection gradients relative to WM fiber orientation. The data demonstrated that the fast-diffusion compartment suppressed by diffusional filtering is not exclusively extra-cellular, but also intra-cellular. While not comprehensive, a simple two-compartment diffusion tensor model with water exchange was able to account qualitatively for the trends in positive and negative filtering efficiencies, while standard model imaging (SMI) without exchange could not. This two-compartment diffusion tensor model also demonstrated smaller AXR variances across subjects. When employing trace-weighted diffusion detection, AXR values were on the order of the R1 (=1/T1) of water at 3T for crossing fibers, while being less than R1 for parallel fibers. CONCLUSION: Orientation-dependent AXR and σ values were observed when using multi-orientation filter and detection gradients in FEXI, indicating that WM FEXI models need to account for compartmental anisotropy. When using trace-weighted detection, AXR values were on the order of or less than R1, complicating the interpretation of FEXI results in WM in terms of biological exchange properties. These findings may contribute toward better understanding of FEXI results in WM.
Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Humanos , Anisotropía , Sustancia Blanca/diagnóstico por imagen , Adulto , Masculino , Imagen de Difusión Tensora/métodos , Femenino , Algoritmos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.
Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Consenso , Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Difusión , Imagen de Difusión por Resonancia Magnética/métodosRESUMEN
PURPOSE: Tensor-valued diffusion encoding can disentangle orientation dispersion and subvoxel anisotropy, potentially offering insight into microstructural changes after cerebral ischemia. The purpose was to evaluate tensor-valued diffusion MRI in human acute ischemic stroke, assess potential confounders from diffusion time dependencies, and compare to Monte Carlo diffusion simulations of axon beading. METHODS: Linear (LTE) and spherical (STE) b-tensor encoding with inherently different effective diffusion times were acquired in 21 acute ischemic stroke patients between 3 and 57 h post-onset at 3 T in 2.5 min. In an additional 10 patients, STE with 2 LTE yielding different effective diffusion times were acquired for comparison. Diffusional variance decomposition (DIVIDE) was used to estimate microscopic anisotropy (µFA), as well as anisotropic, isotropic, and total diffusional variance (MKA , MKI , MKT ). DIVIDE parameters, and diffusion tensor imaging (DTI)-derived mean diffusivity and fractional anisotropy (FA) were compared in lesion versus contralateral white matter. Monte Carlo diffusion simulations of various cylindrical geometries for all b-tensor protocols were used to interpret parameter measurements. RESULTS: MD was Ë40% lower in lesions for all LTE/STE protocols. The DIVIDE parameters varied with effective diffusion time: higher µFA and MKA in lesion versus contralateral white matter for STE with longer effective diffusion time LTE, whereas the shorter effective diffusion time LTE protocol yielded lower µFA and MKA in lesions. Both protocols, regardless of diffusion time, were consistent with simulations of greater beading amplitude and intracellular volume fraction. CONCLUSION: DIVIDE parameters depend on diffusion time in acute stroke but consistently indicate neurite beading and larger intracellular volume fraction.
Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Accidente Cerebrovascular Isquémico/patología , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/patología , Accidente Cerebrovascular/diagnóstico por imagen , Anisotropía , Encéfalo/diagnóstico por imagen , Encéfalo/patologíaRESUMEN
PURPOSE: To demonstrate the technical feasibility and the value of ultrahigh-performance gradient in imaging the prostate in a 3T MRI system. METHODS: In this local institutional review board-approved study, prostate MRI was performed on 4 healthy men. Each subject was scanned in a prototype 3T MRI system with a 42-cm inner-diameter gradient coil that achieves a maximum gradient amplitude of 200 mT/m and slew rate of 500 T/m/s. PI-RADS V2.1-compliant axial T2 -weighted anatomical imaging and single-shot echo planar DWI at standard gradient of 70 mT/m and 150 T/m/s were obtained, followed by DWI at maximum performance (i.e., 200 mT/m and 500 T/m/s). In comparison to state-of-the-art clinical whole-body MRI systems, the high slew rate improved echo spacing from 1020 to 596 µs and, together with a high gradient amplitude for diffusion encoding, TE was reduced from 55 to 36 ms. RESULTS: In all 4 subjects (waist circumference = 81-91 cm, age = 45-65 years), no peripheral nerve stimulation sensation was reported during DWI. Reduced image distortion in the posterior peripheral zone prostate gland and higher signal intensity, such as in the surrounding muscle of high-gradient DWI, were noted. CONCLUSION: Human prostate MRI at simultaneously high gradient amplitude of 200 mT/m and slew rate of 500 T/m/s is feasible, demonstrating that improved gradient performance can address image distortion and T2 decay-induced SNR issues for in vivo prostate imaging.
Asunto(s)
Imagen por Resonancia Magnética , Neoplasias de la Próstata , Masculino , Humanos , Persona de Mediana Edad , Anciano , Próstata/diagnóstico por imagen , Estudios de Factibilidad , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Reproducibilidad de los ResultadosRESUMEN
The dependence of the diffusion MRI signal on the diffusion time carries signatures of restricted diffusion and exchange. Here we seek to highlight these signatures in the human brain by performing experiments using free gradient waveforms designed to be selectively sensitive to the two effects. We examine six healthy volunteers using both strong and ultra-strong gradients (80, 200 and 300 mT/m). In an experiment featuring a large set of 150 gradient waveforms with different sensitivities to restricted diffusion and exchange, our results reveal unique and different time-dependence signatures in grey and white matter. Grey matter was characterised by both restricted diffusion and exchange and white matter predominantly by restricted diffusion. Exchange in grey matter was at least twice as fast as in white matter, across all subjects and all gradient strengths. The cerebellar cortex featured relatively short exchange times (115 ms). Furthermore, we show that gradient waveforms with tailored designs can be used to map exchange in the human brain. We also assessed the feasibility of clinical applications of the method used in this work and found that the exchange-related contrast obtained with a 25-minute protocol at 300 mT/m was preserved in a 4-minute protocol at 300 mT/m and a 10-minute protocol at 80 mT/m. Our work underlines the utility of free waveforms for detecting time dependence signatures due to restricted diffusion and exchange in vivo, which may potentially serve as a tool for studying diseased tissue.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Sustancia Blanca , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Gris , DifusiónRESUMEN
PURPOSE: The study aims to develop easy-to-implement concomitant field-compensated gradient waveforms with varying velocity-weighting (M1) and acceleration-weighting (M2) levels and to evaluate their efficacy in correcting signal dropouts and preserving the black-blood state in liver diffusion-weighted imaging. Additionally, we seek to determine an optimal degree of compensation that minimizes signal dropouts while maintaining blood signal suppression. METHODS: Numerically optimized gradient waveforms were adapted using a novel method that allows for the simultaneous tuning of M1- and M2-weighting by changing only one timing variable. Seven healthy volunteers underwent diffusion-weighted magnetic resonance imaging (DWI) with five diffusion encoding schemes (monopolar, velocity-compensated (M1 = 0), acceleration-compensated (M1 = M2 = 0), 84%-M1-M2-compensated, 67%-M1-M2-compensated) at b-values of 50 and 800 s/mm2 at a constant echo time of 70 ms. Signal dropout correction and apparent diffusion coefficients (ADCs) were quantified using regions of interest in the left and right liver lobe. The blood appearance was evaluated using two five-point Likert scales. RESULTS: Signal dropout was more pronounced in the left lobe (19%-42% less signal than in the right lobe with monopolar scheme) and best corrected by acceleration-compensation (8%-10% less signal than in the right lobe). The black-blood state was best with monopolar encodings and decreased significantly (p < 0.001) with velocity- and/or acceleration-compensation. The partially M1-M2-compensated encoding schemes could restore the black-blood state again. Strongest ADC bias occurred for monopolar encodings (difference between left/right lobe of 0.41 µm2/ms for monopolar vs. < 0.12 µm2/ms for the other encodings). CONCLUSION: All of the diffusion encodings used in this study demonstrated suitability for routine DWI application. The results indicate that a perfect value for the level of M1-M2-compensation does not exist. However, among the examined encodings, the 84%-M1-M2-compensated encodings provided a suitable tradeoff.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Hígado , Humanos , Reproducibilidad de los Resultados , Hígado/diagnóstico por imagen , Hígado/patología , Imagen de Difusión por Resonancia Magnética/métodos , Aceleración , Espectroscopía de Resonancia MagnéticaRESUMEN
Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
Asunto(s)
Encéfalo , Sustancia Blanca , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , AnisotropíaRESUMEN
A significant problem in diffusion MRI (dMRI) is the lack of understanding regarding which microstructural features account for the variability in the diffusion tensor imaging (DTI) parameters observed in meningioma tumors. A common assumption is that mean diffusivity (MD) and fractional anisotropy (FA) from DTI are inversely proportional to cell density and proportional to tissue anisotropy, respectively. Although these associations have been established across a wide range of tumors, they have been challenged for interpreting within-tumor variations where several additional microstructural features have been suggested as contributing to MD and FA. To facilitate the investigation of the biological underpinnings of DTI parameters, we performed ex-vivo DTI at 200 µm isotropic resolution on sixteen excised meningioma tumor samples. The samples exhibit a variety of microstructural features because the dataset includes meningiomas of six different meningioma types and two different grades. Diffusion-weighted signal (DWI) maps, DWI maps averaged over all directions for given b-value, signal intensities without diffusion encoding (S0) as well as DTI parameters: MD, FA, in-plane FA (FAIP), axial diffusivity (AD) and radial diffusivity (RD), were coregistered to Hematoxylin & Eosin- (H&E) and Elastica van Gieson-stained (EVG) histological sections by a non-linear landmark-based approach. Here, we provide DWI signal and DTI maps coregistered to histology sections and describe the pipeline for processing the raw DTI data and the coregistration. The raw, processed, and coregistered data are hosted by Analytic Imaging Diagnostics Arena (AIDA) data hub registry, and software tools for processing are provided via GitHub. We hope that data can be used in research and education concerning the link between the meningioma microstructure and parameters obtained by DTI.
RESUMEN
Structural brain MRI has proven invaluable in understanding movement disorder pathophysiology. However, most work has focused on grey/white matter volumetric (macrostructural) and white matter microstructural effects, limiting understanding of frequently implicated grey matter microstructural differences. Using ultra-strong spherical tensor encoding diffusion-weighted MRI, a persistent MRI signal was seen in healthy cerebellar grey matter even at high diffusion-weightings (b â≥ 10,000 s/mm2). Quantifying the proportion of this signal (denoted fs), previously ascertained to originate from inside small spherical spaces, provides a potential proxy for cell body density. In this work, this approach was applied for the first time to a clinical cohort, including patients with diagnosed movement disorders in which the cerebellum has been implicated in symptom pathophysiology. Five control participants (control group 1, median age 24.5 years (20-39 years), imaged at two timepoints, demonstrated consistency in measurement of all three measures - MD (Mean Diffusivity) fs, and Ds (dot diffusivity)- with intraclass correlation coefficients (ICC) of 0.98, 0.86 and 0.76, respectively. Comparison with an older control group (control group 2 (n = 5), median age 51 years (43-58 years)) found no significant differences, neither with morphometric nor microstructural (MD (p = 0.36), fs (p = 0.17) and Ds (p = 0.22)) measures. The movement disorder cohort (Parkinson's Disease, n = 5, dystonia, n = 5. Spinocerebellar Ataxia 6, n = 5) when compared to the age-matched control cohort (Control Group 2) identified significantly lower MD (p < 0.0001 and p < 0.0001) and higher fs values (p < 0.0001 and p < 0.0001) in SCA6 and dystonia cohorts respectively. Lobar division of the cerebellum found these same differences in the superior and inferior posterior lobes, while no differences were seen in either the anterior lobes or with Ds measurements. In contrast to more conventional measures from diffusion tensor imaging, this framework provides enhanced specificity to differences in restricted spherical spaces in grey matter (including small cells) by eliminating signals from cerebrospinal fluid and axons. In the context of human and animal histopathology studies, these findings potentially implicate the cerebellar Purkinje and granule cells as contributors to the observed signal differences, with both cell types having been implicated in several neurological disorders through both postmortem and animal model studies. This novel microstructural imaging approach shows promise for improving movement disorder diagnosis, prognosis, and treatment.
Asunto(s)
Distonía , Enfermedad de Parkinson , Ataxias Espinocerebelosas , Sustancia Blanca , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Sustancia Gris/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Distonía/patología , Encéfalo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética , Enfermedad de Parkinson/patología , Ataxias Espinocerebelosas/patologíaRESUMEN
The dependence of the diffusion MRI signal on the diffusion time carries signatures of restricted diffusion and exchange. Here we seek to highlight these signatures in the human brain by performing experiments using free gradient waveforms that are selectively sensitive to the two effects. We examine six healthy volunteers using both strong and ultra-strong gradients (80, 200 and 300 mT/m). In an experiment featuring a large set of gradient waveforms with different sensitivities to restricted diffusion and exchange (150 samples), our results reveal unique time-dependence signatures in grey and white matter, where the former is characterised by both restricted diffusion and exchange and the latter predominantly exhibits restricted diffusion. Furthermore, we show that gradient waveforms with independently varying sensitivities to restricted diffusion and exchange can be used to map exchange in the human brain. We consistently find that exchange in grey matter is at least twice as fast as in white matter, across all subjects and all gradient strengths. The shortest exchange times observed in this study were in the cerebellar cortex (115 ms). We also assess the feasibility of future clinical applications of the method used in this work, where we find that the grey-white matter exchange contrast obtained with a 25-minute 300 mT/m protocol is preserved by a 4-minute 300 mT/m and a 10-minute 80 mT/m protocol. Our work underlines the utility of free waveforms for detecting time-dependence signatures due to restricted diffusion and exchange in vivo, which may potentially serve as a tool for studying diseased tissue.
RESUMEN
PURPOSE: Tensor-valued diffusion encoding can probe more specific features of tissue microstructure than what is available by conventional diffusion weighting. In this work, we investigate the technical feasibility of tensor-valued diffusion encoding at high b-values with q-space trajectory imaging (QTI) analysis, in the human heart in vivo. METHODS: Ten healthy volunteers were scanned on a 3T scanner. We designed time-optimal gradient waveforms for tensor-valued diffusion encoding (linear and planar) with second-order motion compensation. Data were analyzed with QTI. Normal values and repeatability were investigated for the mean diffusivity (MD), fractional anisotropy (FA), microscopic FA (µFA), isotropic, anisotropic and total mean kurtosis (MKi, MKa, and MKt), and orientation coherence (Cc ). A phantom, consisting of two fiber blocks at adjustable angles, was used to evaluate sensitivity of parameters to orientation dispersion and diffusion time. RESULTS: QTI data in the left ventricular myocardium were MD = 1.62 ± 0.07 µm2 /ms, FA = 0.31 ± 0.03, µFA = 0.43 ± 0.07, MKa = 0.20 ± 0.07, MKi = 0.13 ± 0.03, MKt = 0.33 ± 0.09, and Cc = 0.56 ± 0.22 (mean ± SD across subjects). Phantom experiments showed that FA depends on orientation dispersion, whereas µFA was insensitive to this effect. CONCLUSION: We demonstrated the first tensor-valued diffusion encoding and QTI analysis in the heart in vivo, along with first measurements of myocardial µFA, MKi, MKa, and Cc . The methodology is technically feasible and provides promising novel biomarkers for myocardial tissue characterization.
Asunto(s)
Imagen de Difusión Tensora , Corazón , Humanos , Imagen de Difusión Tensora/métodos , Corazón/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Miocardio , Ventrículos Cardíacos , AnisotropíaRESUMEN
BACKGROUND: Mean diffusivity (MD) and fractional anisotropy (FA) from diffusion MRI (dMRI) have been associated with cell density and tissue anisotropy across tumors, but it is unknown whether these associations persist at the microscopic level. PURPOSE: To quantify the degree to which cell density and anisotropy, as determined from histology, account for the intra-tumor variability of MD and FA in meningioma tumors. Furthermore, to clarify whether other histological features account for additional intra-tumor variability of dMRI parameters. MATERIALS AND METHODS: We performed ex-vivo dMRI at 200 µm isotropic resolution and histological imaging of 16 excised meningioma tumor samples. Diffusion tensor imaging (DTI) was used to map MD and FA, as well as the in-plane FA (FAIP). Histology images were analyzed in terms of cell nuclei density (CD) and structure anisotropy (SA; obtained from structure tensor analysis) and were used separately in a regression analysis to predict MD and FAIP, respectively. A convolutional neural network (CNN) was also trained to predict the dMRI parameters from histology patches. The association between MRI and histology was analyzed in terms of out-of-sample (R2OS) on the intra-tumor level and within-sample R2 across tumors. Regions where the dMRI parameters were poorly predicted from histology were analyzed to identify features apart from CD and SA that could influence MD and FAIP, respectively. RESULTS: Cell density assessed by histology poorly explained intra-tumor variability of MD at the mesoscopic level (200 µm), as median R2OS = 0.04 (interquartile range 0.01-0.26). Structure anisotropy explained more of the variation in FAIP (median R2OS = 0.31, 0.20-0.42). Samples with low R2OS for FAIP exhibited low variations throughout the samples and thus low explainable variability, however, this was not the case for MD. Across tumors, CD and SA were clearly associated with MD (R2 = 0.60) and FAIP (R2 = 0.81), respectively. In 37% of the samples (6 out of 16), cell density did not explain intra-tumor variability of MD when compared to the degree explained by the CNN. Tumor vascularization, psammoma bodies, microcysts, and tissue cohesivity were associated with bias in MD prediction based solely on CD. Our results support that FAIP is high in the presence of elongated and aligned cell structures, but low otherwise. CONCLUSION: Cell density and structure anisotropy account for variability in MD and FAIP across tumors but cell density does not explain MD variations within the tumor, which means that low or high values of MD locally may not always reflect high or low tumor cell density. Features beyond cell density need to be considered when interpreting MD.
Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagen , Meningioma/patología , Imagen de Difusión Tensora/métodos , Anisotropía , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Meníngeas/patologíaRESUMEN
The choroid plexus (ChP) is part of the blood-cerebrospinal fluid barrier, regulating brain homeostasis and the brain's response to peripheral events. Its upregulation and enlargement are considered essential in psychosis. However, the timing of the ChP enlargement has not been established. This study introduces a novel magnetic resonance imaging-based segmentation method to examine ChP volumes in two cohorts of individuals with psychosis. The first sample consists of 41 individuals with early course psychosis (mean duration of illness = 1.78 years) and 30 healthy individuals. The second sample consists of 30 individuals with chronic psychosis (mean duration of illness = 7.96 years) and 34 healthy individuals. We utilized manual segmentation to measure ChP volumes. We applied ANCOVAs to compare normalized ChP volumes between groups and partial correlations to investigate the relationship between ChP, LV volumes, and clinical characteristics. Our segmentation demonstrated good reliability (.87). We further showed a significant ChP volume increase in early psychosis (left: p < .00010, right: p < .00010) and a significant positive correlation between higher ChP and higher LV volumes in chronic psychosis (left: r = .54, p = .0030, right: r = .68; p < .0010). Our study suggests that ChP enlargement may be a marker of acute response around disease onset. It might also play a modulatory role in the chronic enlargement of lateral ventricles, often reported in psychosis. Future longitudinal studies should investigate the dynamics of ChP enlargement as a promising marker for novel therapeutic strategies.