Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
bioRxiv ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168273

RESUMEN

The PIEZO2 ion channel is critical for transducing light touch into neural signals but is not considered necessary for transducing acute pain in humans. Here, we discovered an exception - a form of mechanical pain evoked by hair pulling. Based on observations in a rare group of individuals with PIEZO2 deficiency syndrome, we demonstrated that hair-pull pain is dependent on PIEZO2 transduction. Studies in control participants showed that hair-pull pain triggered a distinct nocifensive response, including a nociceptive reflex. Observations in rare Aß deafferented individuals and nerve conduction block studies in control participants revealed that hair-pull pain perception is dependent on Aß input. Single-unit axonal recordings revealed that a class of cooling-responsive myelinated nociceptors in human skin is selectively tuned to painful hair-pull stimuli. Further, we pharmacologically mapped these nociceptors to a specific transcriptomic class. Finally, using functional imaging in mice, we demonstrated that in a homologous nociceptor, Piezo2 is necessary for high-sensitivity, robust activation by hair-pull stimuli. Together, we have demonstrated that hair-pulling evokes a distinct type of pain with conserved behavioral, neural, and molecular features across humans and mice.

3.
Mol Psychiatry ; 27(12): 4893-4904, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36127428

RESUMEN

Excessive fear is a hallmark of anxiety disorders, a major cause of disease burden worldwide. Substantial evidence supports a role of prefrontal cortex-amygdala circuits in the regulation of fear and anxiety, but the molecular mechanisms that regulate their activity remain poorly understood. Here, we show that downregulation of the histone methyltransferase PRDM2 in the dorsomedial prefrontal cortex enhances fear expression by modulating fear memory consolidation. We further show that Prdm2 knock-down (KD) in neurons that project from the dorsomedial prefrontal cortex to the basolateral amygdala (dmPFC-BLA) promotes increased fear expression. Prdm2 KD in the dmPFC-BLA circuit also resulted in increased expression of genes involved in synaptogenesis, suggesting that Prdm2 KD modulates consolidation of conditioned fear by modifying synaptic strength at dmPFC-BLA projection targets. Consistent with an enhanced synaptic efficacy, we found that dmPFC Prdm2 KD increased glutamatergic release probability in the BLA and increased the activity of BLA neurons in response to fear-associated cues. Together, our findings provide a new molecular mechanism for excessive fear responses, wherein PRDM2 modulates the dmPFC -BLA circuit through specific transcriptomic changes.


Asunto(s)
Amígdala del Cerebelo , Complejo Nuclear Basolateral , Amígdala del Cerebelo/fisiología , Complejo Nuclear Basolateral/fisiología , Corteza Prefrontal/metabolismo , Miedo/fisiología , Epigénesis Genética
4.
Mol Psychiatry ; 25(2): 506, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31366917

RESUMEN

A correction to this paper has been published and can be accessed via a link at the top of the paper.

5.
Mol Psychiatry ; 25(2): 491-505, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-29695836

RESUMEN

The dorsal striatum has been linked to decision-making under conflict, but the mechanism by which striatal neurons contribute to approach-avoidance conflicts remains unclear. We hypothesized that striatopallidal dopamine D2 receptor (D2R)-expressing neurons promote avoidance, and tested this hypothesis in two exploratory approach-avoidance conflict paradigms in mice: the elevated zero maze and open field. Genetic elimination of D2Rs on striatopallidal neurons (iMSNs), but not other neural populations, increased avoidance of the open areas in both tasks, in a manner that was dissociable from global changes in movement. Population calcium activity of dorsomedial iMSNs was disrupted in mice lacking D2Rs on iMSNs, suggesting that disrupted output of iMSNs contributes to heightened avoidance behavior. Consistently, artificial disruption of iMSN output with optogenetic stimulation heightened avoidance of open areas of these tasks, while inhibition of iMSN output reduced avoidance. We conclude that dorsomedial striatal iMSNs control approach-avoidance conflicts in exploratory tasks, and highlight this neural population as a potential target for reducing avoidance in anxiety disorders.


Asunto(s)
Reacción de Prevención/fisiología , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Animales , Trastornos de Ansiedad , Encéfalo/metabolismo , Línea Celular , Femenino , Sustancia Gris/metabolismo , Hábitos , Inhibición Psicológica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Optogenética/métodos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Trastorno de Movimiento Estereotipado
6.
J Neurosci ; 38(14): 3547-3558, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29523623

RESUMEN

The striatum controls food-related actions and consumption and is linked to feeding disorders, including obesity and anorexia nervosa. Two populations of neurons project from the striatum: direct pathway medium spiny neurons and indirect pathway medium spiny neurons. The selective contribution of direct pathway medium spiny neurons and indirect pathway medium spiny neurons to food-related actions and consumption remains unknown. Here, we used in vivo electrophysiology and fiber photometry in mice (of both sexes) to record both spiking activity and pathway-specific calcium activity of dorsal striatal neurons during approach to and consumption of food pellets. While electrophysiology revealed complex task-related dynamics across neurons, population calcium was enhanced during approach and inhibited during consumption in both pathways. We also observed ramping changes in activity that preceded both pellet-directed actions and spontaneous movements. These signals were heterogeneous in the spiking units, with neurons exhibiting either increasing or decreasing ramps. In contrast, the population calcium signals were homogeneous, with both pathways having increasing ramps of activity for several seconds before actions were initiated. An analysis comparing population firing rates to population calcium signals also revealed stronger ramping dynamics in the calcium signals than in the spiking data. In a second experiment, we trained the mice to perform an action sequence to evaluate when the ramping signals terminated. We found that the ramping signals terminated at the beginning of the action sequence, suggesting they may reflect upcoming actions and not preconsumption activity. Plasticity of such mechanisms may underlie disorders that alter action selection, such as drug addiction or obesity.SIGNIFICANCE STATEMENT Alterations in striatal function have been linked to pathological consumption in disorders, such as obesity and drug addiction. We recorded spiking and population calcium activity from the dorsal striatum during ad libitum feeding and an operant task that resulted in mice obtaining food pellets. Dorsal striatal neurons exhibited long ramps in activity that preceded actions by several seconds, and may reflect upcoming actions. Understanding how the striatum controls the preparation and generation of actions may lead to improved therapies for disorders, such as drug addiction or obesity.


Asunto(s)
Cuerpo Estriado/fisiología , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Animales , Calcio/metabolismo , Cuerpo Estriado/citología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Movimiento , Neuronas/metabolismo , Neuronas/fisiología , Recompensa
7.
J Vis Exp ; (120)2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28287564

RESUMEN

Food intake measurements are essential for many research studies. Here, we provide a detailed description of a novel solution for measuring food intake in mice: the Feeding Experimentation Device (FED). FED is an open-source system that was designed to facilitate flexibility in food intake studies. Due to its compact and battery powered design, FED can be placed within standard home cages or other experimental equipment. Food intake measurements can also be synchronized with other equipment in real-time via FED's transistor-transistor logic (TTL) digital output, or in post-acquisition processing as FED timestamps every event with a real-time clock. When in use, a food pellet sits within FED's food well where it is monitored via an infrared beam. When the pellet is removed by the mouse, FED logs the timestamp onto its internal secure digital (SD) card and dispenses another pellet. FED can run for up to 5 days before it is necessary to charge the battery and refill the pellet hopper, minimizing human interference in data collection. Assembly of FED requires minimal engineering background, and off-the-shelf materials and electronics were prioritized in its construction. We also provide scripts for analysis of food intake and meal patterns. Finally, FED is open-source and all design and construction files are online, to facilitate modifications and improvements by other researchers.


Asunto(s)
Diseño Asistido por Computadora , Ingestión de Alimentos , Conducta Alimentaria , Vivienda para Animales , Animales , Diseño de Equipo , Femenino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...