Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(8): 112887, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37498746

RESUMEN

Translesion DNA synthesis (TLS) facilitates replication over damaged or difficult-to-replicate templates by employing specialized DNA polymerases. We investigate the effect on spontaneous mutagenesis of three main TLS control mechanisms: REV1 and PCNA ubiquitylation that recruit TLS polymerases and PRIMPOL that creates post-replicative gaps. Using whole-genome sequencing of cultured human RPE-1 cell clones, we find that REV1 and Polymerase ζ are wholly responsible for one component of base substitution mutagenesis that resembles homologous recombination deficiency, whereas the remaining component that approximates oxidative mutagenesis is reduced in PRIMPOL-/- cells. Small deletions in short repeats appear in REV1-/-PCNAK164R/K164R double mutants, revealing an alternative TLS mechanism. Also, 500-5,000 bp deletions appear in REV1-/- and REV3L-/- mutants, and chromosomal instability is detectable in REV1-/-PRIMPOL-/- cells. Our results indicate that TLS protects the genome from deletions and large rearrangements at the expense of being responsible for the majority of spontaneous base substitutions.

2.
PLoS Genet ; 18(2): e1010051, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130276

RESUMEN

Translesion DNA synthesis (TLS) is a fundamental damage bypass pathway that utilises specialised polymerases with relaxed template specificity to achieve replication through damaged DNA. Misinsertions by low fidelity TLS polymerases may introduce additional mutations on undamaged DNA near the original lesion site, which we termed collateral mutations. In this study, we used whole genome sequencing datasets of chicken DT40 and several human cell lines to obtain evidence for collateral mutagenesis in higher eukaryotes. We found that cisplatin and UVC radiation frequently induce close mutation pairs within 25 base pairs that consist of an adduct-associated primary and a downstream collateral mutation, and genetically linked their formation to TLS activity involving PCNA ubiquitylation and polymerase κ. PCNA ubiquitylation was also indispensable for close mutation pairs observed amongst spontaneously arising base substitutions in cell lines with disrupted homologous recombination. Collateral mutation pairs were also found in melanoma genomes with evidence of UV exposure. We showed that collateral mutations frequently copy the upstream base, and extracted a base substitution signature that describes collateral mutagenesis in the presented dataset regardless of the primary mutagenic process. Using this mutation signature, we showed that collateral mutagenesis creates approximately 10-20% of non-paired substitutions as well, underscoring the importance of the process.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , ADN/genética , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación , Antígeno Nuclear de Célula en Proliferación/genética
3.
Nat Commun ; 13(1): 226, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017534

RESUMEN

Defects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch-mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells. 53BP1 also promotes TLS in human cellular extracts in vitro. Our results show that HR deficiency-specific mutagenesis is largely caused by TLS, and suggest a function for 53BP1 in regulating the choice between TLS and error-free template switching in replicative DNA damage bypass.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Conversión Génica , Mutación Missense , Proteína BRCA2/metabolismo , Aductos de ADN , Daño del ADN , Reparación del ADN , Humanos , Mutagénesis , Proteína 1 de Unión al Supresor Tumoral P53
4.
Mutagenesis ; 36(1): 75-86, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33502495

RESUMEN

Platinum-based drugs are a mainstay of cancer chemotherapy. However, their mutagenic effect can increase tumour heterogeneity, contribute to the evolution of treatment resistance and also induce secondary malignancies. We coupled whole genome sequencing with phenotypic investigations on two cell line models to compare the magnitude and examine the mechanism of mutagenicity of cisplatin, carboplatin and oxaliplatin. Cisplatin induced significantly more base substitution mutations than carboplatin or oxaliplatin when used at equitoxic concentrations on human TK6 or chicken DT40 cells, and also induced the highest number of short insertions and deletions. The analysis of base substitution spectra revealed that all three tested platinum drugs elicit both a direct mutagenic effect at purine dinucleotides, and an indirect effect of accelerating endogenous mutagenic processes, whereas the direct mutagenic effect appeared to correlate with the level of DNA damage caused as assessed through histone H2AX phosphorylation and single-cell agarose gel electrophoresis, the indirect mutagenic effects were equal. The different mutagenicity and DNA-damaging effect of equitoxic platinum drug treatments suggest that DNA damage independent mechanisms significantly contribute to their cytotoxicity. Thus, the comparatively high mutagenicity of cisplatin should be taken into account in the design of chemotherapeutic regimens.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN , Linfocitos/patología , Linfoma/patología , Mutágenos/efectos adversos , Animales , Carboplatino/farmacología , Células Cultivadas , Pollos , Cisplatino/farmacología , Humanos , Linfocitos/efectos de los fármacos , Linfoma/tratamiento farmacológico , Pruebas de Mutagenicidad , Oxaliplatino/farmacología
5.
Genome Biol ; 20(1): 240, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727117

RESUMEN

BACKGROUND: Homologous recombination (HR) repair deficiency arising from defects in BRCA1 or BRCA2 is associated with characteristic patterns of somatic mutations. In this genetic study, we ask whether inactivating mutations in further genes of the HR pathway or the DNA damage checkpoint also give rise to somatic mutation patterns that can be used for treatment prediction. RESULTS: Using whole genome sequencing of an isogenic knockout cell line panel, we find a universal HR deficiency-specific base substitution signature that is similar to COSMIC signature 3. In contrast, we detect different deletion phenotypes corresponding to specific HR mutants. The inactivation of BRCA2 or PALB2 leads to larger deletions, typically with microhomology, when compared to the disruption of BRCA1, RAD51 paralogs, or RAD54. Comparison with the deletion spectrum of Cas9 cut sites suggests that most spontaneously arising genomic deletions are not the consequence of double-strand breaks. Surprisingly, the inactivation of checkpoint kinases ATM and CHK2 has no mutagenic consequences. Analysis of tumor exomes with biallelic inactivating mutations in the investigated genes confirms the validity of the cell line models. We present a comprehensive analysis of sensitivity of the investigated mutants to 13 therapeutic agents for the purpose of correlating genomic mutagenic phenotypes with drug sensitivity. CONCLUSION: Our results suggest that no single genomic mutational class shows perfect correlation with sensitivity to common treatments, but the contribution of COSMIC signature 3 to base substitutions, or a combined measure of different features, may be reasonably good at predicting platinum and PARP inhibitor sensitivity.


Asunto(s)
Genes cdc , Mutagénesis , Variantes Farmacogenómicas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Reparación del ADN por Recombinación/genética , Animales , Línea Celular , Pollos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Mutación Puntual
6.
Genome Biol ; 17: 99, 2016 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-27161042

RESUMEN

BACKGROUND: Genomic mutations caused by cytotoxic agents used in cancer chemotherapy may cause secondary malignancies as well as contribute to the evolution of treatment-resistant tumour cells. The stable diploid genome of the chicken DT40 lymphoblast cell line, an established DNA repair model system, is well suited to accurately assay genomic mutations. RESULTS: We use whole genome sequencing of multiple DT40 clones to determine the mutagenic effect of eight common cytotoxics used for the treatment of millions of patients worldwide. We determine the spontaneous mutagenesis rate at 2.3 × 10(-10) per base per cell division and find that cisplatin, cyclophosphamide and etoposide induce extra base substitutions with distinct spectra. After four cycles of exposure, cisplatin induces 0.8 mutations per Mb, equivalent to the median mutational burden in common leukaemias. Cisplatin-induced mutations, including short insertions and deletions, are mainly located at sites of putative intrastrand crosslinks. We find two of the newly defined cisplatin-specific mutation types as causes of the reversion of BRCA2 mutations in emerging cisplatin-resistant tumours or cell clones. Gemcitabine, 5-fluorouracil, hydroxyurea, doxorubicin and paclitaxel have no measurable mutagenic effect. The cisplatin-induced mutation spectrum shows good correlation with cancer mutation signatures attributed to smoking and other sources of guanine-directed base damage. CONCLUSION: This study provides support for the use of cell line mutagenesis assays to validate or predict the mutagenic effect of environmental and iatrogenic exposures. Our results suggest genetic reversion due to cisplatin-induced mutations as a distinct mechanism for developing resistance.


Asunto(s)
Antineoplásicos/toxicidad , Cisplatino/toxicidad , Citotoxinas/toxicidad , Mutágenos/toxicidad , Tasa de Mutación , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Línea Celular Tumoral , Pollos , Cisplatino/efectos adversos , Cisplatino/farmacología , Citotoxinas/efectos adversos , Citotoxinas/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Genes BRCA2 , Genoma , Mutágenos/efectos adversos , Mutágenos/farmacología
7.
Genome Announc ; 3(5)2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26383655

RESUMEN

The draft genome sequence of a novel Mycoplasma strain, designated Mycoplasma sp. HU2014, has been determined. The genome comprises 1,084,927 nucleotides and was obtained from a mycoplasma-infected culture of chicken DT40 cells. Phylogenetic analysis places this taxon in a group comprising the closely related species Mycoplasma yeatsii and Mycoplasma cottewii.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA