Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 240: 107633, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37343375

RESUMEN

Model-based glycemic control (GC) protocols are used to treat stress-induced hyperglycaemia in intensive care units (ICUs). The STAR (Stochastic-TARgeted) glycemic control protocol - used in clinical practice in several ICUs in New Zealand, Hungary, Belgium, and Malaysia - is a model-based GC protocol using a patient-specific, model-based insulin sensitivity to describe the patient's actual state. Two neural network based methods are defined in this study to predict the patient's insulin sensitivity parameter: a classification deep neural network and a Mixture Density Network based method. Treatment data from three different patient cohorts are used to train the network models. Accuracy of neural network predictions are compared with the current model- based predictions used to guide care. The prediction accuracy was found to be the same or better than the reference. The authors suggest that these methods may be a promising alternative in model-based clinical treatment for patient state prediction. Still, more research is needed to validate these findings, including in-silico simulations and clinical validation trials.


Asunto(s)
Hiperglucemia , Resistencia a la Insulina , Humanos , Glucemia , Redes Neurales de la Computación , Simulación por Computador , Hiperglucemia/tratamiento farmacológico
2.
Front Med (Lausanne) ; 9: 747570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665323

RESUMEN

Introduction: Coronavirus disease-2019 (COVID-19) pneumonia has different phenotypes. Selecting the patient individualized and optimal respirator settings for the ventilated patient is a challenging process. Electric impedance tomography (EIT) is a real-time, radiation-free functional imaging technique that can aid clinicians in differentiating the "low" (L-) and "high" (H-) phenotypes of COVID-19 pneumonia described previously. Methods: Two patients ("A" and "B") underwent a stepwise positive end-expiratory pressure (PEEP) recruitment by 3 cmH2O of steps from PEEP 10 to 25 and back to 10 cmH2O during a pressure control ventilation of 15 cmH2O. Recruitment maneuvers were performed under continuous EIT recording on a daily basis until patients required controlled ventilation mode. Results: Patients "A" and "B" had a 7- and 12-day long trial, respectively. At the daily baseline, patient "A" had significantly higher compliance: mean ± SD = 53 ± 7 vs. 38 ± 5 ml/cmH2O (p < 0.001) and a significantly higher physiological dead space according to the Bohr-Enghoff equation than patient "B": mean ± SD = 52 ± 4 vs. 45 ± 6% (p = 0.018). Following recruitment maneuvers, patient "A" had a significantly higher cumulative collapse ratio detected by EIT than patient "B": mean ± SD = 0.40 ± 0.08 vs. 0.29 ± 0.08 (p = 0.007). In patient "A," there was a significant linear regression between the cumulative collapse ratios at the end of the recruitment maneuvers (R 2 = 0.824, p = 0.005) by moving forward in days, while not for patient "B" (R 2 = 0.329, p = 0.5). Conclusion: Patient "B" was recognized as H-phenotype with high elastance, low compliance, higher recruitability, and low ventilation-to-perfusion ratio; meanwhile patient "A" was identified as the L-phenotype with low elastance, high compliance, and lower recruitability. Observation by EIT was not just able to differentiate the two phenotypes, but it also could follow the transition from L- to H-type within patient "A." Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04360837.

3.
J Diabetes Sci Technol ; 16(5): 1208-1219, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34078114

RESUMEN

BACKGROUND: Critically ill ICU patients frequently experience acute insulin resistance and increased endogenous glucose production, manifesting as stress-induced hyperglycemia and hyperinsulinemia. STAR (Stochastic TARgeted) is a glycemic control protocol, which directly manages inter- and intra- patient variability using model-based insulin sensitivity (SI). The model behind STAR assumes a population constant for endogenous glucose production (EGP), which is not otherwise identifiable. OBJECTIVE: This study analyses the effect of estimating EGP for ICU patients with very low SI (severe insulin resistance) and its impact on identified, model-based insulin sensitivity identification, modeling accuracy, and model-based glycemic clinical control. METHODS: Using clinical data from 717 STAR patients in 3 independent cohorts (Hungary, New Zealand, and Malaysia), insulin sensitivity, time of insulin resistance, and EGP values are analyzed. A method is presented to estimate EGP in the presence of non-physiologically low SI. Performance is assessed via model accuracy. RESULTS: Results show 22%-62% of patients experience 1+ episodes of severe insulin resistance, representing 0.87%-9.00% of hours. Episodes primarily occur in the first 24 h, matching clinical expectations. The Malaysian cohort is most affected. In this subset of hours, constant model-based EGP values can bias identified SI and increase blood glucose (BG) fitting error. Using the EGP estimation method presented in these constrained hours significantly reduced BG fitting errors. CONCLUSIONS: Patients early in ICU stay may have significantly increased EGP. Increasing modeled EGP in model-based glycemic control can improve control accuracy in these hours. The results provide new insight into the frequency and level of significantly increased EGP in critical illness.


Asunto(s)
Hiperglucemia , Resistencia a la Insulina , Glucemia/análisis , Cuidados Críticos/métodos , Enfermedad Crítica , Glucosa , Humanos , Insulina , Unidades de Cuidados Intensivos
4.
Trials ; 21(1): 130, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32007099

RESUMEN

BACKGROUND: Positive end-expiratory pressure (PEEP) at minimum respiratory elastance during mechanical ventilation (MV) in patients with acute respiratory distress syndrome (ARDS) may improve patient care and outcome. The Clinical utilisation of respiratory elastance (CURE) trial is a two-arm, randomised controlled trial (RCT) investigating the performance of PEEP selected at an objective, model-based minimal respiratory system elastance in patients with ARDS. METHODS AND DESIGN: The CURE RCT compares two groups of patients requiring invasive MV with a partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio ≤ 200; one criterion of the Berlin consensus definition of moderate (≤ 200) or severe (≤ 100) ARDS. All patients are ventilated using pressure controlled (bi-level) ventilation with tidal volume = 6-8 ml/kg. Patients randomised to the control group will have PEEP selected per standard practice (SPV). Patients randomised to the intervention will have PEEP selected based on a minimal elastance using a model-based computerised method. The CURE RCT is a single-centre trial in the intensive care unit (ICU) of Christchurch hospital, New Zealand, with a target sample size of 320 patients over a maximum of 3 years. The primary outcome is the area under the curve (AUC) ratio of arterial blood oxygenation to the fraction of inspired oxygen over time. Secondary outcomes include length of time of MV, ventilator-free days (VFD) up to 28 days, ICU and hospital length of stay, AUC of oxygen saturation (SpO2)/FiO2 during MV, number of desaturation events (SpO2 < 88%), changes in respiratory mechanics and chest x-ray index scores, rescue therapies (prone positioning, nitric oxide use, extracorporeal membrane oxygenation) and hospital and 90-day mortality. DISCUSSION: The CURE RCT is the first trial comparing significant clinical outcomes in patients with ARDS in whom PEEP is selected at minimum elastance using an objective model-based method able to quantify and consider both inter-patient and intra-patient variability. CURE aims to demonstrate the hypothesized benefit of patient-specific PEEP and attest to the significance of real-time monitoring and decision-support for MV in the critical care environment. TRIAL REGISTRATION: Australian New Zealand Clinical Trial Registry, ACTRN12614001069640. Registered on 22 September 2014. (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366838&isReview=true) The CURE RCT clinical protocol and data usage has been granted by the New Zealand South Regional Ethics Committee (Reference number: 14/STH/132).


Asunto(s)
Oxígeno/sangre , Respiración con Presión Positiva , Síndrome de Dificultad Respiratoria/terapia , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Pruebas Respiratorias/métodos , Ensayos Clínicos Fase II como Asunto , Diseño Asistido por Computadora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Consumo de Oxígeno , Respiración con Presión Positiva/efectos adversos , Respiración con Presión Positiva/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/fisiopatología , Sistema Respiratorio/fisiopatología
5.
Artículo en Inglés | MEDLINE | ID: mdl-26737491

RESUMEN

Asynchronous Events (AEs) during mechanical ventilation (MV) result in increased work of breathing and potential poor patient outcomes. Thus, it is important to automate AE detection. In this study, an AE detection method, Automated Logging of Inspiratory and Expiratory Non-synchronized breathing (ALIEN) was developed and compared between standard manual detection in 11 MV patients. A total of 5701 breaths were analyzed (median [IQR]: 500 [469-573] per patient). The Asynchrony Index (AI) was 51% [28-78]%. The AE detection yielded sensitivity of 90.3% and specificity of 88.3%. Automated AE detection methods can potentially provide clinicians with real-time information on patient-ventilator interaction.


Asunto(s)
Respiración Artificial/métodos , Automatización , Espiración , Humanos , Respiración
6.
Biomed Eng Online ; 13: 140, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25270094

RESUMEN

BACKGROUND: Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. IMPLEMENTATION: CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. RESULTS AND DISCUSSION: Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CONCLUSION: CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.


Asunto(s)
Mecánica Respiratoria/fisiología , Programas Informáticos , Humanos , Respiración con Presión Positiva/métodos , Respiración Artificial/métodos , Ventiladores Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...